Triangle Proportionality Theorem.

If a line parallel to one side of a triangle intersects the other two sides of the triangle, then the line divides these two sides proportionally.

SPECIAL CASE OF THE CONVERSE PROPORTIONALITY THEOREM: THE MID-POINT THEOREM

A corollary of the proportion theorem is the mid-point theorem: the line joining the midpoints of two sides of a triangle is parallel to the third side and equal to half the length of the third side.

If $\mathrm{AB}=\mathrm{BD}$ and $\mathrm{AC}=\mathrm{CE}$, then $\mathrm{BC} \| \mathrm{DE}$ and $B C=1 / 2 D E$.

We also know that $\frac{A C}{C E}=\frac{A B}{B D}$

APPLYING THE PROPRTIONALITY THEOREM:
 EXAMPLE 1

In the diagram below, $\triangle \mathrm{ABC}$ has D on AB and E on AC such that $\mathrm{DE} \| \mathrm{BC}$. $\mathrm{DB}=2$ units, $\mathrm{EC}=3$ units, $\mathrm{AD}=x$ units and $\mathrm{AE}=x+2$ units.
Determine the value of x.

Statement
Reason
$\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}} \quad$ prop theorem $\mathrm{DE} \| B C$
$\frac{x}{2}=\frac{x+2}{3}$

$$
\begin{aligned}
& 2(x+2)=3 x \\
& 2 x+4=3 x \\
& 4=x
\end{aligned}
$$

