

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

SENIOR CERTIFICATE EXAMINATIONS/ NATIONAL SENIOR CERTIFICATE EXAMINATIONS

MECHANICAL TECHNOLOGY: WELDING AND METALWORK

2023

MARKING GUIDELINES

MARKS: 200

These marking guidelines consist of 21 pages.

Please turn over

QUESTION 1: MULTIPLE-CHOICE QUESTIONS (GENERIC)

1.1	C✓	(1)
1.2	A✓	(1)
1.3	A✓	(1)
1.4	C ✓	(1)
1.5	B✓	(1)
1.6	A✓	(1) [6]

2.1	Safety rule after the work procedures: Switch off the machine. ✓		(1)
2.2	 Space between the tool rest and the emery wheel: To prevent the work piece from jamming between the wherest. ✓ Prevents the wheel from being damaged. ✓ Prevents the work piece from being damaged. ✓ Prevent injury. ✓ 	eel and tool	
		(Any 2 x 1)	(2)
2.3	Workshop layouts:		
	2.3.1 Process layout. ✓		(1)
	2.3.2 Product layout. ✓		(1)
2.4	 Hydraulic press: Safety goggles ✓ Safety gloves ✓ Safety shoes ✓ Overall ✓ 		
		(Any 1 x 1)	(1)
2.5	 Safety guard on the portable angle grinder: To protect one against sparks/metal particles. ✓ To protect one from a breaking disc. ✓ To protect your hand from coming into contact with the disc. 	√ (Any 1 x 1)	(1)
2.6	 Shearing/Guillotine machine: Follow the manufactures recommendations. ✓ Keep hands away from action points. ✓ Do not exceed the maximum material thickness. ✓ Ensure that all guards are in place and secure. ✓ Report defects immediately. ✓ 		

(Any 1 x 1) (1)

Mechanical Technology: Welding and Metalwork 3 SC/NSC – Marking Guidelines

2.7 **Storing gas cylinders:**

- Upright position ✓
- Stored at 20°C / cool area ✓
- Empty cylinders stored separately from full cylinder. ✓
- Never store cylinders on top of each other.
- Oxygen cylinders separate from fuel cylinders. ✓
- Secure gas cylinders. ✓
- Ensure that cylinders are properly closed. ✓
- Stored away from sparks / flammable material/ electrical switches. ✓
- Stored in a well-ventilated area. ✓
- Safety signs should be displayed. ✓
- Keep cylinders clearly labelled (Full/Empty). ✓

(Any 2 x 1) (2) [10]

QUESTION 3: MATERIALS (GENERIC)

3.1 **Purpose of tempering:**

- To relieve ✓ strain / brittleness. ✓
- To increase ✓ the toughness of the steel. ✓
- To refine ✓ grain structure. ✓

3.2 Heat treatment processes:

3.2.1 Case hardening: • To obtain a wear-resistant surface \checkmark and at the same time be tough enough internally at the core \checkmark to withstand the applied loads. • For a hard case ✓ over a tough core. ✓ (Any 1 x 2) (2)3.2.2 Annealing: To relieve ✓ internal stresses. ✓ To soften ✓ steel. ✓ Facilitate ✓ the machining processes. ✓ Increase ✓ the steel's ductility. ✓ Reduce ✓ brittleness. ✓ (Any 1 x 2) (2) 3.3 Spark test: Hold steel against grinding wheel. ✓ • Observe the spark pattern to identify the type of steel. \checkmark (2) 3.4 Tests: 3.4.1 Filing test: File on the tip or near the edge \checkmark of the material. The bite will determine the hardness. \checkmark (2) 3.4.2 Bend test: Metal is subjected to deformation by bending. ✓ Observe the rupture of the metal. ✓ (2) 3.5 Sound test on steel: 3.5.1 Low carbon steel (LCS): Dull (low pitch) ✓ sound. (1)3.5.2 High carbon steel (HCS): Loud and clear (high pitch) \checkmark sound. (1) [14]

(2)

(Any 1 x 2)

QUESTION 4: MULTIPLE-CHOICE QUESTIONS (SPECIFIC)

4.1	C✓	(1)
4.2	B✓	(1)
4.3	A✓	(1)
4.4	B✓	(1)
4.5	D✓	(1)
4.6	D✓	(1)
4.7	B✓	(1)
4.8	D✓	(1)
4.9	C✓	(1)
4.10	A✓	(1)
4.11	C✓	(1)
4.12	A✓	(1)
4.13	D✓	(1)
4.14	B✓	(1) [14]

Copyright reserved

QUESTION 5: TERMINOLOGY(TEMPLATES) (SPECIFIC)

5.1	• Purli	f covering \checkmark is attached \checkmark to the purlins. ns contribute to the rigidity \checkmark and correct spacing \checkmark of the rs/structure. (Any 1 x 2)	(2)
5.2	Types	of weld symbols:	()
	5.2.1	Site weld ✓	(1)
	5.2.2	Surfacing ✓	(1)
	5.2.3	U butt weld ✓	(1)
	5.2.4	Seam weld ✓	(1)
5.3		mplates are used for longer sections of angle iron. \checkmark	(1)
5.4		sions of the material:	(')
5.4			
	5.4.1	Mean diameter:	
		Mean \emptyset = Inside \emptyset + Thickness	
		$= 180 + 12 \checkmark$	
		=192 mm ✓	(2)
	5.4.2	Mean circumference:	
		Mean circumference = $\pi \times$ Mean Ø	
		=π×192mm ✓	
		=603,186 mm ✓	
		Round off to 603 mm ✓	(3)
5.5	Fille8 mi	g symbols: t weld both sides ✓ m in size ✓ gth of weld bead is 50 mm ✓	

• Pitch of weld is 100 mm \checkmark (4)

5.6 **Roof truss:**

- A- Purlins ✓
- B- Ridging ✓
- C- Roof covering ✓
- D- Rafter ✓
- E- Internal bracing member ✓

5.7 Lattice beams:

- Tends to be very rigid. $\checkmark\checkmark$
- Gives good strength to weight ratios over long spans. ✓✓

(Any 1 x 2)

(2) **[23]**

(5)

QUESTION 6: TOOLS AND EQUIPMENT (SPECIFIC)

6.1 Bench grinder uses:

- Sharpening of tools •
- Shaping of metal
- Remove unwanted material •
- Remove rough edges (burrs)
- Grinding prior to welding of work piece
- Used in conjunction with wire brush wheel to remove rust
- Used in conjunction with buffing wheel to polish work piece

(Any 3 x 1) (3)

(1)

(3)

(1)

6.3 Plasma cutter:

Metal inert gas

MIG:

6.2

- The cutter sends an electrical channel of ionized gas through the work piece being cut.
- It forms a complete electric circuit via a grounding clamp. •
- Compressed air is blown towards the work piece through a focused nozzle at high speed.
- An electric arc is formed between the gas nozzle and the work piece. (4)

6.4 Types of taps:

- Taper tap / first tap
- Intermediate tap / second tap □
- Plug tap / bottoming tap

6.5 Removing slag:

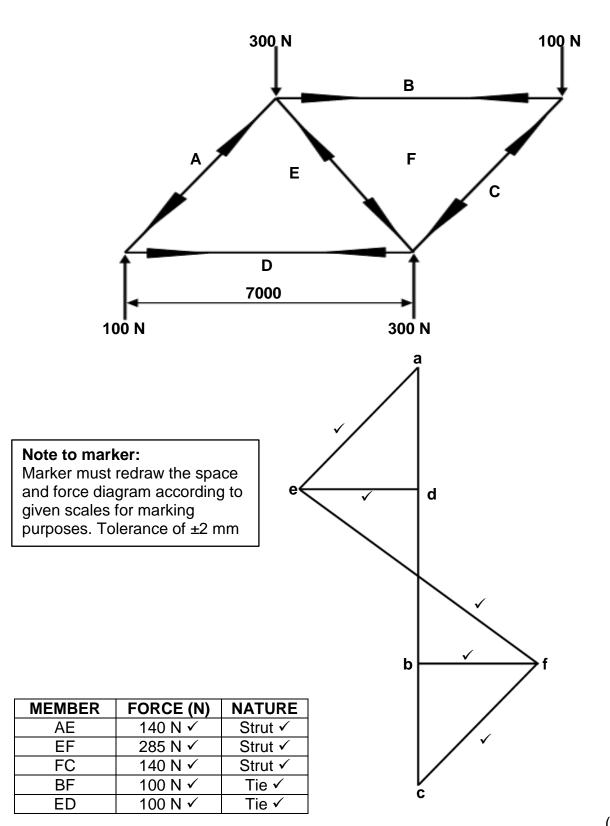
- Chipping hammer ✓
- Wire brush ✓
- 6.6 Vertical rollers: Used solely for bending / rolling thick, heavy plates. \checkmark (1)

6.7 Horizontal band saw:

- Ensures clean cut.
- Removes shavings / cuttings.
- Blade life span is prolonged.
- Cools the blade. \Box •
- Cools the metal. \Box •

(Any 2 x 1) (2)

(Any 1 x 1)


6.8 **Oxy-acetylene equipment - processes:**

- Gas welding ✓
- Brazing ✓
- Silver soldering \checkmark
- Heating / Melting ✓
- Cutting ✓
- Gouging \checkmark

(Any 3 x 1) (3) [18]

QUESTION 7: FORCES (SPECIFIC)

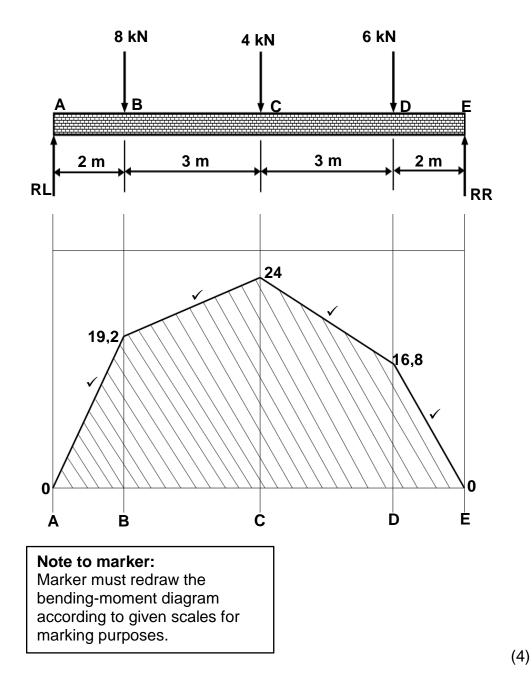
7.1 Frameworks:

(15)

7.2 **Beams:**

7.2.1 Calculate RL: Moments about RR: $RL \times 10 = (8 \times 8) + (4 \times 5) + (6 \times 2)$ $RL = \frac{96}{10}$ $RL = 9,6 \text{ kN } \checkmark$ (4)

7.2.2 Calculate RR: Moments about RL:


$$RR \times 10 = (6 \times 8) + (4 \times 5) + (8 \times 2)$$
$$RR = \frac{84}{10}$$
$$RR = 8,4 \text{ kN } \checkmark$$
(4)

7.2.3 Bending moment:

Moment at:

t at:
B: 9,6 x
$$\stackrel{\checkmark}{2}$$
 = 19,2 kN.m $\stackrel{\checkmark}{\checkmark}$
C: (9,6 x 5) $\stackrel{\checkmark}{-}$ (8 x 3) = 24 kN.m $\stackrel{\checkmark}{\checkmark}$
D: (9,6 x 8) - (8 x 6) $\stackrel{\checkmark}{-}$ (4 x 3) = 16,8 kN.m $\stackrel{\checkmark}{\checkmark}$ (6)

7.2.4 **Bending-moment diagram:**

7.3 **Stress and strain:**

7.3.1 Cross sectional area m²:

$$A = \frac{\pi D^{2}}{4}$$

= $\frac{\pi \times 0.03^{2}}{4} \checkmark$
= 0.71 x 10⁻³ m² \lambda (2)

7.3.2 Stress MPa:

Stress =
$$\frac{\text{Load}}{\text{Area}}$$

= $\frac{80 \times 10^3}{0.71 \times 10^{-3}} \checkmark$
= 1126760563 Pa
= 112,68 MPa \checkmark (3)

7.3.3 **Strain:**

Strain =
$$\frac{\Delta L}{OL}$$

= $\frac{0.06}{3000}$ \checkmark
= 0,00002 OR 2 × 10⁻⁵ \checkmark (2)

7.3.4 Young's modulus of elasticity:

$$E = \frac{\text{Stress}}{\text{Strain}}$$

$$= \frac{112,68 \times 10^{6}}{2 \times 10^{-5}} \checkmark \qquad \text{OR} = \frac{112,68 \times 10^{6}}{2 \times 10^{-5}} \checkmark$$

$$= 5,633802815 \times 10^{12} \text{ Pa} = 5,634 \times 10^{12} \text{ Pa}$$

$$= 5633,80 \times \text{GPa} \checkmark \qquad = 5634 \text{ GPa} \checkmark \qquad (3)$$

7.4 Maximum stress:

Stress =
$$\frac{\text{Load}}{\text{Area}}$$

= $\frac{55 \times 10^3}{0.9 \times 10^{-5}}$ \checkmark
= 6111111111 Pa
= 6111,11 MPa

(2) **[45]**

QUESTION 8: JOINING METHODS (INSPECTION OF WELD) (SPECIFIC)

8.1 **Visual inspection:**

- Shape of the profile ✓
- Uniformity of the surface ✓
- Overlap ✓
- Undercutting ✓
- Penetration bead ✓
- Root groove ✓
- Fusion ✓
- Reinforcement ✓
- Porosity ✓
- Spatter ✓
- Slag inclusions ✓
- (ANY WELD DEFECT THAT CAN BE SEEN VISUALLY AFTER WELDED) ✓

(Any 2 x 1) (2)

(Any 1 x 1)

(1)

8.2 Free bend test:

- Ductility ✓
- Brittleness ✓
- Malleability ✓
- Elongation ✓
- Elasticity ✓

8.3 Weld defect:

Weld defect is a result which does not meet \checkmark the prescribed requirements of a welded joint. \checkmark (2)

8.4 **Causes of welding defects:**

8.4.1 **Undercutting:**

- Current too high ✓
- Current too low ✓
- Wrong electrode angle ✓
- Arc length too long ✓
- Weld speed too fast ✓
- Too low arc voltage ✓
- Faulty electrode manipulation ✓

(Any 2 x 1) (2)

8.4.2 Blow hole:

- Presence of contaminants / impurities on the job surface or on electrode flux ✓
- Presence of high sulphur in the job or electrode materials \checkmark
- Lack of shielding gas \checkmark
- Using wet electrode ✓

(Any 2 x 1) (2)

8.5 **Destructive tests:**

- Machinability test ✓
- Nick break test ✓
- Free bend test \checkmark
- Guided bend test \checkmark

(Any 2 x 1) (2)

8.6 **Procedure for conducting X-ray test:**

- The photographic film is sealed in an envelope (so that the light cannot expose it) and placed behind the object being tested. ✓
- The X-ray or gamma ray source is placed in front of the object being tested. ✓
- The tester should stand behind lead shields and far away from possible harmful exposure. The source is activated for a brief moment and the X-rays penetrate the test piece. ✓
- As they pass through the areas of lower density, the rays expose the defect on the film as a lighter colour on the negative, ✓ indicating a weld defect. ✓
- Photographic films provide a permanent record of the shadow which can be carefully studied. / Shown on a monitor screen ✓
 (6)

8.7 **Types of dye:**

- Fluorescent dye ✓
- Brightly coloured dye \checkmark

8.8 Internal weld defects:

- Cracks ✓
- Slag inclusion ✓
- Lack of fusion ✓
- Lack of root penetration ✓
- Blow hole ✓
- Porosity ✓

(Any 2 x 1) (2)

(2)

8.9 Centreline cracks:

- Use the correct width to depth ratio. \checkmark
- Decreasing the current to decrease excess penetration. ✓
- Decreasing welding/arc voltage. ✓

QUESTION 9: JOINING METHODS (STRESSES AND DISTORTION) (SPECIFIC)

9.1 **Distortion and residual stress:**

- If the expansion that occurs when metal is heated is resisted then distortion will occur. ✓
- When contraction that occurs on cooling is resisted then a stress will be applied. ✓
- If the applied stress causes movement then distortion occurs. \checkmark
- If the applied stress does not cause movement then there will be residual stress in the welded joint. ✓

(Any 2 x 1) (2)

(2)

9.2 Shrinkage:

Shrinkage is a form of plastic deformation where the metal has deformed \checkmark as a result of contraction on cooling. \checkmark

9.3 Grain size:

- The prior amount of cold work ✓
- The temperature and time of the annealing process ✓
- The composition \checkmark
- The melting point ✓

(Any 2 x 1) (2)

9.4 **Cold working and hot working:**

- Cold working is when deformation ✓ of steel takes place below the recrystallisation temperature (AC₁) ✓ of the steel.
- Hot working is when deformation ✓ of steel takes place above the recrystallisation temperature (AC₁) ✓ of the steel.

9.5 **Distortion:**

- Do not over weld. ✓
- Apply intermittent welding. ✓
- Place welds near the neutral axis. ✓
- Use as few passes as possible. ✓
- Use back-step welding. ✓
- Anticipate the shrinkage forces. ✓
- Plan the welding sequence. ✓
- Use strong backs. ✓
- Use clamps, jigs and fixtures. ✓

(Any 4 x 1) (4)

9.6	Types	of distortion:	
-----	-------	----------------	--

9.7

Rapid co	cooled rapidly: bling of metal results in large temperature differences that set up \checkmark which cause cracks on the surface. \checkmark	(2) [18]
9.6.2	Angular distortion ✓	(1)
9.6.1	Longitudinal distortion ✓	(1)

QUESTION 10: MAINTENANCE (SPECIFIC)

10.1 **Maintenance definition:**

Precautionary measures, actions and processes \checkmark that are taken to keep a machine or process \checkmark in a functional order. \checkmark

10.2 **Pedestal drilling machine:**

- Visual checks of electrical wiring, switches. ✓
- Verify that all guards are secure and function correctly. ✓
- Lubricate moving parts. ✓
- Use moisture-penetrating oil spray to prevent rust. ✓
- Check for availability of specific tools. ✓
- Check the run-out of the spindle. ✓
- Inspect drive belts for wear. ✓
- Ensure the drive belt is correctly tensioned. ✓
- Check the condition of the rack and pinion mechanisms and lubricate. \checkmark
- Ensure cuttings are removed. ✓
- Inspect the Morse taper sleeves for burrs/scratches. ✓
- Check the chuck is correctly fitted and tight. ✓

(Any 2 x 1) (2)

10.3 **Tagging plates:**

- It is to isolate switches of machines before maintenance is undertaken. ✓
- To show workers that maintenance is being carried out on a specific machine. ✓

(Any 1 x 1) (1)

10.4 **Service records:**

- Assist in the monitoring of the condition of the machines. \checkmark
- Assist in upholding warranties. ✓
- Assist in keeping a history of maintenance and repairs. ✓

(Any 2 x 1) (2)

[8]

(3)

QUESTION 11: TERMINOLOGY (DEVELOPMENTS) (SPECIFIC)

- 11.1 **Hopper:**
 - 11.1.1 Square \checkmark to rectangle \checkmark on centre. \checkmark (3)
 - 11.1.2 (a) **A–1:**

$$A - 1 = \sqrt{100^{2} + 125^{2} + 450^{2}} \checkmark$$

= $\sqrt{228125}$
= 477,62 mm \checkmark (2)

(b) **A–2:**

$$A - 2 = \sqrt{400^2 + 125^2 + 450^2} \checkmark$$

= $\sqrt{378125}$
= 614,92 mm \checkmark (2)

(c) **B-3:** $B-3 = \sqrt{375^2 + 100^2 + 450^2} \checkmark$ $= \sqrt{353125}$ $= 594,24 \text{ mm} \checkmark$ (2)

11.2 **Cone frustum:**

11.2.1 **A–B:**

$$A - B = \frac{\pi \times D}{12} \checkmark$$
$$= \frac{\pi \times 800}{12} \checkmark$$
$$= 209,44 \text{ mm} \checkmark \qquad (3)$$

11.2.2 **0–1:**

$$0-1 = \frac{\pi \times d}{12} \checkmark$$
$$= \frac{\pi \times 600}{12} \checkmark$$
$$= 157,08 \text{mm} \checkmark \qquad (3)$$

Copyright reserved

11.2.3 **A–0:**

Plan length / base line:

True length:

$$A - 0 = \sqrt{100^{2} + 500^{2}} \checkmark$$

= $\sqrt{260000}$
= 509,90 mm \checkmark (4)

11.3 Square to round transformer: Use to connect ducting sections ✓ of dissimilar shapes to each other. ✓ (2) [21]

TOTAL: 200