

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

SENIOR CERTIFICATE EXAMINATIONS/ NATIONAL SENIOR CERTIFICATE EXAMINATIONS

MECHANICAL TECHNOLOGY: AUTOMOTIVE

2023

MARKING GUIDELINES

MARKS: 200

These marking guidelines consist of 21 pages.

Please turn over

QUESTION 1: MULTIPLE-CHOICE QUESTIONS (GENERIC)

1.1	C✓	(1)
1.2	A✓	(1)
1.3	A✓	(1)
1.4	C✓	(1)
1.5	B✓	(1)
1.6	A✓	(1) [6]

DBE/2023

QUESTION 2: SAFETY (GENERIC)

2.1	Safety rule after the work procedures: Switch off the machine. ✓	(1)
2.2	 Space between the tool rest and the emery wheel: To prevent the work piece from jamming between the wheel and tool rest. ✓ Prevents the wheel from being damaged. ✓ Prevents the work piece from being damaged. ✓ Prevent injury. ✓ 	
	(Any 2 x 1)	(2)
2.3	Workshop layouts:	
	2.3.1 Process layout. ✓	(1)
	2.3.2 Product layout. ✓	(1)
2.4	 Hydraulic press: Safety goggles ✓ Safety gloves ✓ Safety shoes ✓ Overall ✓ 	
	(Any 1 x 1)	(1)
2.5	 Safety guard on the portable angle grinder: To protect one against sparks/metal particles. ✓ To protect one from a breaking disc. ✓ To protect your hand from coming into contact with the disc. ✓ (Any 1 x 1) 	(1)
2.6	 Shearing/Guillotine machine: Follow the manufactures recommendations. ✓ Keep hands away from action points. ✓ Do not exceed the maximum material thickness. ✓ Ensure that all guards are in place and secure. ✓ Report defects immediately. ✓ 	

(Any 1 x 1) (1)

2.7 **Storing gas cylinders:**

- Upright position ✓
- Stored at 20°C / cool area ✓
- Empty cylinders stored separately from full cylinder. ✓
- Never store cylinders on top of each other.
- Oxygen cylinders separate from fuel cylinders. ✓
- Secure gas cylinders. ✓
- Ensure that cylinders are properly closed. ✓
- Stored away from sparks / flammable material/ electrical switches. ✓
- Stored in a well-ventilated area. ✓
- Safety signs should be displayed. ✓
- Keep cylinders clearly labelled (Full/Empty). ✓

(Any 2 x 1) (2)

3.1	• Tor • Toi	e of tempering: relieve ✓ strain / brittleness. ✓ increase ✓ the toughness of the steel. ✓ refine ✓ grain structure. ✓ (Any 1 x 2)	(2)
3.2	Heat tre	atment processes:	
	3.2.1	 Case hardening: To obtain a wear-resistant surface ✓ and at the same time be tough enough internally at the core ✓ to withstand the applied loads. For a hard case ✓ over a tough core. ✓ (Any 1 x 2) 	(2)
	3.2.2	 Annealing: To relieve ✓ internal stresses. ✓ To soften ✓ steel. ✓ Facilitate ✓ the machining processes. ✓ Increase ✓ the steel's ductility. ✓ Reduce ✓ brittleness. ✓ 	(2)
3.3	Spark te		()
5.5	Hold	steel against grinding wheel. \checkmark erve the spark pattern to identify the type of steel. \checkmark	(2)
3.4	Tests:		
	3.4.1	Filing test: File on the tip or near the edge \checkmark of the material. The bite will determine the hardness. \checkmark	(2)
	3.4.2	 Bend test: Metal is subjected to deformation by bending. ✓ Observe the rupture of the metal. ✓ 	(2)
3.5	Sound t	est on steel:	
	3.5.1	Low carbon steel (LCS): Dull (low pitch)✓ sound.	(1)
	3.5.2	High carbon steel (HCS): Loud and clear (high pitch) ✓ sound.	(1) [14]

QUESTION 3: MATERIALS (GENERIC)

QUESTION 4: MULTIPLE-CHOICE QUESTIONS (SPECIFIC)

4.1	C✓	(1)
4.2	B✓	(1)
4.3	A✓	(1)
4.4	C✓	(1)
4.5	B✓	(1)
4.6	C✓	(1)
4.7	B✓	(1)
4.8	C✓	(1)
4.9	A✓	(1)
4.10	B✓	(1)
4.11	D✓	(1)
4.12	A✓	(1)
4.13	C✓	(1)
4.14	C✓	(1) [14]

QUESTION 5: TOOLS AND EQUIPMENT (SPECIFIC)

5.1	Engine (5.1.1	 cylinder compression test: Reasons for compression test: To determine the amount of compression loss ✓ from a specific cylinder. ✓ 	
		 To determine if the compression rings ✓ are worn. ✓ (Any 1 x 2) 	(2)
	5.1.2	 Type of compression test: Dry test ✓ Wet test ✓ 	(2)
	5.1.3	 Reasons for low compression: Worn / cracked cylinders ✓ Worn / broken piston rings ✓ Worn / broken piston ✓ Leaking inlet valve ✓ Leaking exhaust valve ✓ Worn / cracked / bent valve assembly ✓ Leaking cylinder head gasket ✓ 	(2)
E 0	Culindar		()
5.2	5.2.1	 Ieakage tester: Labels for cylinder leakage tester: A – Pressure control valve / - knob / - regulator ✓ B – Gauge / Meter ✓ C – Compressor hose / - air hose / -pipe ✓ D – Spark plug connector / - adapter / - hose / - pipe ✓ 	(4)
	5.2.2	 Reason for pressurised air: To determine the percentage pressure leakage ✓ from the cylinder. ✓ location ✓ of the cylinder leakage. ✓ (Any 1 x 2) 	(2)
5.3	 The ir The h There system Conde The c When Test r 	The paper filter becomes light grey, it should be replaced. \checkmark	

Ensure the tester is connected to the battery correctly.

(Any 3 x 1) (3)

5.4	 Systems scanned by on-board diagnostic scanner: Powertrain (PCM) ✓ Transmission (TCM) ✓ Brakes (ABS) ✓ Body (BCM) ✓ Engine (ECM) ✓ Humidity, ventilation and air conditioning (HVAC) ✓ Air bags (SRS) ✓ 		
		(Any 3 x 1)	(3)
5.5	 Faults on the wheel established during dynamic wheel ba The extent of the imbalance ✓ The run-out of the tyre ✓ The run-out of the wheel assembly ✓ 	llancing: (Any 2 x 1)	(2)
5.6	 Perform dynamic wheel balancing: Start the balancer and allow wheel to spin. ✓ Obtain the imbalance readings and its locations on the rim Fit the correct weights. ✓ 	. ✓	(3) [23]

DBE/2023

QUESTION 6: ENGINES (SPECIFIC)

6.1	Cranksha	aft:		
	6.1.1	Crankshaft ✓		(1)
	6.1.2	Function: To convert the reciprocating motion of the pistons motion. \checkmark	✓ into rotary	(2)
	6.1.3	Crank web / counterweight ✓		(1)
	6.1.4	Static balance: The crankshaft is in static balance when the directions \checkmark from the centre of rotation is equal views. \checkmark		(2)
6.2	Vibration	damper:		
	6.2.1	Crankshaft ✓		(1)
	6.2.2	Function: To smooth/dampen out the engine vibrations. \checkmark		(1)
6.3	 Inline / V ✓ W ✓ Flat / h 	ne ✓		
	• Della		(Any 3 x 1)	(3)
6.4	To redTo ens	rokes intervals: uce engine vibrations. ✓ ure smooth running of the engine. ✓ uce the wear rate on the engine components. ✓	(Any 2 x 1)	(2)
6.5	Read fIt mayCheck	e the firing order: rom the vehicle specifications. \checkmark be written on the tappet cover. \checkmark the order in which the valves rock. \checkmark the order in which the sparks are distributed from the itor. \checkmark	(Any 3 x 1)	(3)

10 SC/NSC – Marking Guidelines

6.6 **Turbocharger:**

6.7

6.8

6.9

6.6.1	Boost: The increasing of manifold pressure ✓ above the normal atmospheric pressure. ✓	(2)
6.6.2	 Types: Variable Geometry Turbocharger (VGT) ✓ Non-variable Turbocharger ✓ 	(2)
Supercl	harger:	
6.7.1	 Reasons for fitting: To increase cylinder pressure / compression pressure. ✓ To increase the volumetric efficiency. ✓ To increase the engine output / performance. ✓ Increase fuel efficiency. ✓ 	(2)
6.7.2	 Mechanical drive: Belt ✓ Gears ✓ 	
	 Chain ✓ Shaft ✓ (Any 2 x 1) 	(2)
• Two	harging: mbination of a turbocharger ✓ and a supercharger. ✓ turbochargers ✓ are combined on the same engine. ✓ superchargers ✓ are combined on the same engine. ✓ (Any 1 x 2)	(2)
 Outsi Redu Incre Redu 	ages of twin-charging: tanding fuel economy. ✓ tanding fuel economy. ✓ tanding fuel economy. ✓ tased power and torque across the entire power band. ✓ tased power required (sapping effect) by the supercharger pulley the engine. ✓	~~/
nom	(Any 2 x 1)	(2) [29]

[28]

QUESTION 7: FORCES (SPECIFIC)

7.1 Swept volume:

- Total volume ✓ when the piston moves from bottom dead centre to top dead centre. ✓
- Total volume ✓ displaced during a stroke. ✓

(Any 1 x 2) (2)

7.2 Method to increase compression ratio:

- Remove shims between the cylinder block and cylinder head. ✓
- Fit thinner cylinder head gasket. ✓
- Machine metal from cylinder head. ✓
- Skim metal from cylinder block. ✓
- Fit a piston with a higher crown. ✓
- Fit a crankshaft with a longer stroke. ✓
- Increase the bore of the cylinders / bigger pistons. ✓

(Any 3 x 1) (3)

7.3 **Calculation:**

7.3.1 Swept volume:

$$SV = \frac{\pi \times D^{2}}{4} \times L$$

= $\frac{\pi \times (9^{2})}{4} \times 10 \checkmark$
= 636,17 cm³ \lambda (3)

7.3.2 **Original clearance volume:**

$$CV = \frac{SV}{CR - 1}$$

= $\frac{636,17}{10,5 - 1} \checkmark$
= 66,97 cm³ \lambda (3)

(7)

7.3.3 **New bore diameter:**

New compression ratio =
$$\frac{SV}{CV}$$
+1
 $SV = (CR-1)(CV) \checkmark$
 $SV = (11-1)(66,97) \checkmark$
 $SV = 669,7 \text{ cm}^3 \checkmark$

$$SV = \frac{\pi \times D^2}{4} \times L$$
$$D = \sqrt{\frac{SV \times 4}{\pi \times L}} \quad \checkmark$$
$$= \sqrt{\frac{669, 7 \times 4}{\pi \times 10}} \quad \checkmark$$
$$= 9,234 \text{ cm } \checkmark$$
$$= 92,34 \text{ mm } \checkmark$$

7.4 **Prony brake calculations:**

7.4.1 Indicated power in kW:

P=900 ×10³ Pa

$$L = \frac{86}{1000}$$

= 0,086 m \checkmark
$$A = \frac{\pi \times D^{2}}{4}$$

= $\frac{\pi \times 0,084^{2}}{4} \checkmark$
= 5,542×10⁻³ m² \checkmark
$$N = \frac{2000}{60 \times 1} \checkmark$$

= 33,33 power strokes / sec \checkmark
$$n = 2 \text{ cylinders}$$

IP = PLANn
= (900 × 10³)(0,086)(5,542 × 10⁻³)(33,33)(2) \checkmark
= 28502.86 W

= 28593,86 W = 28,59 kW ✓

(7)

13 SC/NSC – Marking Guidelines

7.4.2 Brake power in kW:

Torque = Force × radius

$$✓$$

= (25×10)(0,4) ✓
= 100 Nm ✓

BP =
$$2\pi$$
NT
= $2 \times \pi \times 33,33 \times 100$ ✓
= 20941,85663 W
= 20,94 kW ✓

(5)

7.4.3 **Mechanical efficiency:**

$$\eta = \frac{\mathsf{BP}}{\mathsf{IP}} \times 100$$

= $\frac{20,94}{28,59} \times 100 \checkmark$
= 73,24 % \checkmark (2)

(2) **[32]**

(4)

QUESTION 8: MAINTENANCE (SPECIFIC)

8.1 Gas Analysis:

FAULTS (DEFECTS)	POSSIBLE CAUSES	CORRECTIVE MEASURES
(22:20:0)	8.1.1	8.1.2
High oxygen	Too lean air-fuel ratio. ✓	Reset fuel mixture. ✓
(O ₂)	Ignition problems. ✓	Check and reset ignition
reading		system. 🗸
	Vacuum leaks. ✓	Repair vacuum leaks. 🗸
	Catalytic converter not	Check and repair the
	working. 🗸	catalytic converter. ✓
	(Any 1 x 1)	(Any 1 x 1)
	8.1.3	8.1.4
High	Excessive unburned fuel. ✓	Reset fuel mixture. ✓
hydrocarbon	Improper timing. 🗸	Check and reset ignition
(HC)		system. ✓
reading	Vacuum leak. ✓	Repair vacuum leaks. 🗸
	Faulty air management	Check and repair the air
	system. ✓	management system. 🗸
	(Any 1 x 1)	(Any 1 x 1)

8.2 **Compression test:**

8.2.1	 Prevent distribution of high voltage. ✓ To prevent electrical shock. ✓ To gain access to the spark plugs. ✓ 	(Any 1 x 1)	(1)
8.2.2	 To prevent fuel entering the exhaust system. ✓ To prevent fuel from entering the tester. ✓ 	(Any 1 x 1)	(1)
8.2.3	 To obtain the correct amount of air entering the c To obtain a correct reading. ✓ 	cylinder. ✓ (Any 1 x 1)	(1)
8.2.4	 To compare reading to the specifications. ✓ To check if the pressure is correct or not. ✓ 	(Any 1 x 1)	(1)

8.3 **Cylinder leakage test:**

FAULTS (DEFECTS)	POSSIBLE CAUSES	CORRECTIVE MEASURES
Hissing sound at	Leaking inlet valves. 🗸	Replace or reseat valves. ✓
the air intake	Gasket blown between	Replace head gasket. 🗸
	adjacent cylinders. 🗸	
	(Any 1 x 1)	(Any 1 x 1)

8.3.2	Hissing sound at	Worn piston rings. 🗸	•	Overhaul engine. 🗸	
	the dipstick		•	Fit new rings. 🗸	
		Worn piston. 🗸	•	Fit new pistons. ✓	
			•	Overhaul engine. 🗸	
		(Any 1 x 1)		(Any 1 x 1)	(2)

8.4	BlockToo liDirtyOil vis	of a high oil pressure reading: ted oil passages ✓ ittle crankshaft bearing clearances ✓ or contaminated oil ✓ scosity is too high ✓ sure relief valve stuck in closed position. ✓	(Any 3 x 1)	(3)		
8.5	Fuel pressure test:					
	8.5.1	 Manufacturer's specifications for fuel pressure for the pressure after the fuel pump. ✓ Fuel pressure when the engine is idling. ✓ Fuel pressure on high revolutions. ✓ 	test: (Any 2 x 1)	(2)		
	8.5.2	Placement of fuel pressure tester: Fit the fuel pressure tester to the fuel line. ✓		(1)		
	8.5.3	 Perished rubber pipe of fuel pressure tester: Fuel / pressure will leak from the pipe. ✓ The tester will give inaccurate results. ✓ 				

• Fire hazard. ✓

(Any 1 x 1) (1)

8.6 **Causes of cooling system pressure drop:**

Coolant leaks from ...

- between gaskets/seals of the cooling system. ✓
- water hoses. ✓
- blown cylinder head gasket. ✓
- the water pump. ✓
- radiator. ✓
- heater radiator. ✓
- corroded welch or core plugs. \checkmark
- components not fitted correctly. \checkmark

(Any 4 x 1) (4) [23]

QUESTION 9: SYSTEMS AND CONTROL (AUTOMATIC GEARBOX) (SPECIFIC)

9.1	Solutions for an automatic gearbox:				
	9.1.1	 Remove the propeller / drive shaft. ✓ Use a flatbed tow-truck. ✓ Use a mobi-jack / lift the drive wheels off the gro 	und. ✓ (Any 1 x 1)	(1)	
	9.1.2	 Use a lock-up clutch. ✓ The torque converter needs to be replaced. ✓ The torque converter to be repaired. ✓ Top-up fluids/oil. ✓ 	(Any 1 x 1)	(1)	
	9.1.3	 Identify the cause of the problem and repair. ✓ Use an oil cooler. ✓ Top-up/replace fluids/oil. ✓ 	(Any 1 x 1)	(1)	
	9.1.4	 Ensure the lever is shifted to: Park (P) ✓ Neutral (N) ✓ 	(Any 1 x 1)	(1)	
	9.1.5	Use automatic transmission fluid (ATF). \checkmark		(1)	
9.2	Components of the torque converter:				
	9.2.1	 Pump ✓ Impeller ✓ 	(Any 1 x 1)	(1)	
	9.2.2	Turbine ✓		(1)	
	9.2.3	Stator ✓		(1)	
9.3	Manual	valve ✓		(1)	
9.4	 Provid Chan It's co	ages of epicyclic gear trains: des a variation in torque. ✓ ges the direction of rotation. ✓ ompact in design. ✓ s are in constant mesh. ✓	(Any 2 x 1)	(2)	
9.5	Gear sy	stem of an automatic gearbox:		~ /	
	9.5.1	Double epicyclic gear system ✓		(1)	

9.5.2 **Obtain reverse gear:**

- The brake band locks the annulus 1. \checkmark
- The input shaft (engine) drives the sun gears. ✓
- Planet gear 1 walks around the sun gear 1 in a reverse direction. ✓
- Planet gear 1 turns the planet carrier in a reverse direction. ✓
- Planet carrier turns the output shaft. \checkmark (5)

9.6 Oil pump ✓

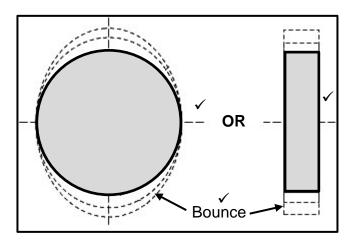
(1) **[18]**

10.1 Well-designed steering system:

- Light and easy to control ✓ •
- Free from vibration and road shocks ✓
- As direct as possible without much drivers effort. ✓
- Self centering ✓
- Not unduly affected by the suspension or braking system operation \checkmark •

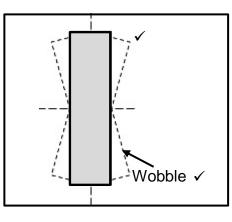
(Any 2 x 1) (2)

10.2 Wheel alignment angle:


- 10.2.1 Label A-C:
 - A. Axle centre ✓
 - B. Rear axle ✓
 - (3) C. Steering arms ✓

10.2.2 Angle D: Ackermann's angle ✓ (1)

It gives variable toe-out \checkmark to the front wheels on turns. \checkmark 10.2.3 (2)


10.3 Unbalanced wheels drawings:

10.3.1 Wheel bounce (hop):

(2)

10.3.2 Wheel wobble (shimmy):

(2)

(2)

10.3.3 Difference between wheel wobble and wheel bounce:

- Wheel wobble is the side to side movement (vibration) of a wheel. \checkmark
- Wheel bounce is the up and down movement (vibration) of a wheel. ✓

10.4 **Materials coating the monolith:**

- Aluminium oxide ✓
- Platinum ✓
- Rhodium ✓
- Palladium ✓

(Any 2 x 1) (2)

10.5 **Functions of sensors:**

10.5.1 Lambda sensor:

- The sensor measures the oxygen content in the flow of the exhaust gas. ✓
- Sends the information to the electronic control unit (ECU). ✓ (2)

10.5.2 Throttle position sensor (TPS) sensor:

- Detects the position of the throttle. \checkmark
- Sends the information to the electronic control unit (ECU). ✓ (2)

10.5.3 Mass Air Flow (MAF) sensor:

- To measure the air flow to the engine. ✓
- To measure the air flow temperature. ✓
- Sends the information to the electronic control unit (ECU). \checkmark

(Any 2 x 1) (2)

21 SC/NSC – Marking Guidelines

DBE/2023

10.6	 Operation of common rail direct injection (CRDI): The high pressure pump transfers the fuel under high pressure to the common rail. ✓ The common rail holds and distributes the pressurised fuel to the injectors. ✓ 	
	• The injectors spray the fuel directly into the cylinder. \checkmark	(3)
10.7	 Current is generated: If a magnetic field is moved across a conductor ✓, a voltage is induced across the ends of the conductor ✓, which will cause a current to flow ✓ Convert mechanical energy ✓ into electrical energy ✓ by electromagnetic induction. ✓ 	
	(Any 1 x 3)	(3)
10.8	 Alternator stator tests: Continuity ✓ 	
	 Leakage ✓ 	(2)
10.9	 Positions electrical fuel pump is placed: Inside the fuel tank ✓ 	
	 External – anywhere on the fuel line. ✓ 	(2) [32]
	TOTAL:	200