

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS: 200

These marking guidelines consist of 18 pages.

Please turn over

QUESTION 1: MULTIPLE-CHOICE QUESTIONS(GENERIC)

1.1	B✓	(1)
1.2	B✓	(1)
1.3	C✓	(1)
1.4	C✓	(1)
1.5	A✓	(1)
1.6	B✓	(1) [6]

QUESTION 2: SAFETY (GENERIC)			
2.1	 Vital functions: Breathing ✓ Heart rate / pulse ✓ State of consciousness ✓ (Any 2 x 1) 	(2)	
2.2	 Safety glasses during grinding: To prevent any injuries to the operator's eyes. ✓ To protect eyes from sparks and debris. ✓ To prevent blindness due to injury. ✓ 	(1)	
2.3	 Type of guards: Fixed guard ✓ Automatic sweep-away ✓ Self-adjusting / automatic guard ✓ Electronic presence sensing device ✓ Two-hand control device. ✓ 	(2)	
2.4	 Precautions before gas welding operations can be undertaken: An operator has been instructed on how to use the equipment safely. ✓ A workplace is effectively partitioned off. ✓ An operator uses protective equipment (PPE). ✓ Ensure that fire equipment is at hand. ✓ Ensure that the equipment is in a safe working condition. ✓ Ensure the gas equipment is set-up correctly. ✓ Ensure the area is well ventilated. ✓ Ensure that the working area is safe. ✓ 	(3)	
2.5	 TWO disadvantages of the product layout: Lack of flexibility. ✓ Optimum use of equipment is not possible. ✓ 	(2) [10]	
		r. •1	

3

QUESTION 3: MATERIALS (GENERIC)

3.1 **THREE properties:**

- Toughness ✓
 - Hardness / Wear resistance ✓
 - Softness ✓
 - Case hardness ✓
 - Ductility ✓
 - Malleability ✓
 - Elasticity ✓
 - Brittleness ✓
 - Strength ✓

(Any 3 x 1) (3)

(4)

(3)

3.2 Heat treatment processes:

3.2.1 **Tempering:**

- It consists of heating the hardened steel ✓ to a temperature below its critical temperature (colour chart).
- Soaking it at this temperature for a period of time, ✓
- Quenching/cooling it rapidly in water, brine or oil. ✓

3.2.2 Hardening:

- The steel is heated slightly higher than the upper critical temperature. ✓
- The steel is soaked at that temperature for the required time. ✓
- The steel is then rapidly cooled by quenching in water, brine or oil. ✓

3.3 **Examples of case-hardening:**

- Bearing cases ✓
- Bearing ball ✓
- Bearing needles ✓
- Crankshafts ✓
- Gears ✓
- Camshafts ✓
- Cylinder sleeves ✓
- Hammer head ✓
- Jack Hammer drill bits ✓

(Any 2 x 1) (2)

3.4 Why steels are cooled down in still air away from draughts:

This prevents sudden cooling of localised spots, \checkmark which might cause distortion/cracks. \checkmark

(2) **[14]**

QUESTION 4: MULTIPLE-CHOICE (SPECIFIC)

4.1	B√	(1)
4.2	A✓	(1)
4.3	B✓	(1)
4.4	A✓	(1)
4.5	D✓	(1)
4.6	C✓	(1)
4.7	B✓	(1)
4.8	C✓	(1)
4.9	C✓	(1)
4.10	B✓	(1)
4.11	D✓	(1)
4.12	B✓	(1)
4.13	A✓	(1)
4.14	D✓	(1) [14]

QUESTION 5: TOOLS AND EQUIPMENT (SPECIFIC)

5.1 **Compression test:**

	 5.1.1 The ignition system is disconnected: To prevent a shocking hazard to the operator. ✓ To prevent fire hazard. ✓ Prevent any sparks / flow of current from the ignition system. ✓ 	
	 5.1.2 All spark plugs are removed: To ensure accurate readings. ✓ To allow the engine to swing easier. ✓ To fit the compression tester. ✓ (Any 2 x 1) 	(2)
	 5.1.3 Removing the air filter: To allow maximum air flow into the cylinder. ✓ To ensure accurate readings. ✓ 	(2)
5.2	 Cylinder leakage tester: Connect the compressed air hose from compressor to the tester. ✓ Adjust the regulator valve knob and observe the gauge needle. ✓ Stop turning the knob when the gauge is on 0%. ✓ 	(3)
5.3	 Exhaust gas analyser: Analyse exhaust gasses. ✓ Indicate the amount of CO, CO₂, HC, NO_X, SO₂ and O₂. ✓ Indicate the stoichiometric air/fuel ratio / Lambda reading. ✓ (Any 2 x 1) 	(2)
5.4	 OBD scanners: Bluetooth ✓ Wi-Fi ✓ Cable ✓ 	(3)
5.5	 Static wheel balance and dynamic wheel balance: Static balancing refers to the wheel's balance as it becomes stationary. ✓ Dynamic balancing refers to the wheel's balance while in motion. ✓ 	(2)
5.6	 Wheel imbalance: The plane of imbalance / The imbalance is on the inner or outer side of the wheel. ✓ The extent of the unbalancing forces / The mass of the balancing weights. ✓ The sense of direction of these forces / Forces are clockwise or counter clockwise. ✓ 	(3)

5.7 **Optical alignment:**

- Look through the periscope gauge. ✓
- Align the vertical line through the triangle by moving the pointer arm. \checkmark
- Take the degree reading on the toe gauge. \checkmark
- Note if the reading is on the IN or the OUT of the scale. \checkmark

(4) [**23**]

QUESTION 6: ENGINES (SPECIFIC)

6.1 **Crankshaft indirectly drives:**

- Camshaft ✓
- Distributor ✓
- Oil pump ✓
- Water pump ✓
- Power steering pump ✓
- Air conditioner ✓
- Fan ✓
- Alternator ✓
- Supercharger ✓
- Mechanical fuel pump ✓
- Pistons ✓
- Valves / valve train ✓

(Any 3 x 1) (3)

6.2 **Vibration dampers:**

6.2.1	Combined rubber and friction disc \checkmark	(1)
6.2.2	The friction face-type \checkmark	(1)

6.3 **Features that improve engine balance:**

- The crankshaft is carefully balanced / Counterweights on the crankshaft. \checkmark
- Connecting rods and pistons are kept as light as possible. ✓
- Flywheels are carefully balanced. ✓
- The mass of the reciprocating masses for each cylinder are kept as uniform as possible. ✓
- The power strokes should be spaced at equal intervals / Firing order configured for balancing. \checkmark
- Dual mass flywheels are fitted to the rear of the crankshaft. ✓
- Engine is fitted with crankshaft balance shafts. ✓

(Any 4 x 1) (4)

6.4 V-type engine advantages:

- Can be mounted in smaller engine compartments. ✓
- The engine is shorter in length. ✓
- Improved power to weight ratio. ✓
- Lighter mass. ✓
- Improved fuel efficiency. ✓
- Crankshaft is less likely to twist. ✓

(Any 2 x 1) (2)

6.5	Four-cyli 1-3-4- 1-2-4- 1-3-2- 1-3-2- 1-4-3-	-3 ✓ -4 ✓		
			(Any 2 x 1)	(2)
6.6	Position	of crankpin:		
	6.6.1	 8-cylinder ✓ 		(1)
	6.6.2	 3-cylinder ✓ 6-cylinder ✓ 	(Any 1 x 1)	(1)
	6.6.3	 4-cylinder ✓ 		
	0.0.0	 2-cylinder ✓ 	(Any 1 x 1)	(1)
6.7	Turboch	arger:		
	6.7.1	 Labelling the turbocharger: A. Compressor outlet / Air outlet ✓ B. Compressor / Compressor housing(casing) ✓ C. Turbine housing(casing)(section) ✓ D. Exhaust gas outlet / Gas outlet ✓ E. Exhaust gas inlet / Gas inlet ✓ 	/ Impeller	(5)
	6.7.2	 Types of turbochargers: Non-variable type turbocharger ✓ Variable geometry turbocharger (VGT) ✓ Single turbocharger ✓ Twin turbocharger ✓ Twin-scroll turbocharger ✓ Variable Twin-scroll turbocharger ✓ Electric turbocharger ✓ 	(Any 2 x 1)	(2)
	6.7.3	 Idling before turning the engine off: Allows the turbo charger to slow down. ✓ To cool down the turbo charger components. ✓ To ensure lubrication to the turbo charger. ✓ Prevent the oil to coke (carbon deposits). ✓ 	(Ally 2 A 1)	(2)
			(Any 2 x 1)	(2)

6.8 Superchargers:

		[28]
6.8.3	Twin-screw supercharger ✓	(1)
6.8.2	Roots supercharger ✓	(1)
6.8.1	Centrifugal supercharger ✓	(1)

(3)

(2)

QUESTION 7: FORCES (SPECIFIC)

7.1 Swept volume:

7.2.1

The volume displaced by the piston \checkmark during a stroke (BDC to TDC). \checkmark (2)

7.2 Work:

Work = Force $(m \times g) \times distance$ = $(980 \times 10) \times 35$ = 343000 J

= 343kJ ✓

7.3 **Cylinder:** 7.3.1

Α.	Bore / Cylinder diameter 🗸
В.	Stroke length 🗸

7.3.2 Swept volume:

A. 120 mm = 12 cm
 B. 135 mm = 13,5 cm
 ✓ (for converting to cm)

B. 100 mm = 10,0 cm

Swept volume =	$\frac{\pi \times D^2}{4} \times$ Stroke length

$$= \frac{\pi \times 12^2}{4} \times 13,5$$
$$= 1526,81 \,\mathrm{cm}^3 \checkmark$$

OR

Swept volume =
$$\frac{\pi \times D^2}{4} \times$$
 Stroke length

$$= \frac{\pi \times 120^2}{4} \times 135^{4}$$
= 1 526 814,03 mm³
= 1 526,81 \checkmark cm³ \checkmark (for converting to cm³) (4)

7.3.3 **Compression ratio (CR):**

$$CR = \frac{SV}{CV} + 1$$
 $CR = \frac{SV + CV}{CV}$
 $CR = \frac{1526,81}{102,5} + 1$
 $OR = \frac{1526,81 + 102,5}{102,5}$
 $CR = 15,9:1 \checkmark$
 $CR = 15,9:1 \checkmark$
 (3)

7.4 Calculate Indicated power:

P = 1150kPa

$$L = \frac{77}{1000} = 0,077 \, \text{m} \, \checkmark$$

$$A = \frac{\pi D^2}{4} \checkmark$$
$$= \frac{\pi \times 0, 1^2}{4}$$
$$= 7,85 \times 10^{-3} \text{ m}^2 \checkmark$$

$$N = \frac{1800}{60 \times 2} \checkmark$$

= 15 power strokes/sec.

n = 4 cylinders

Indicated Power = PLANn

$$= (1150 \times 10^{3}) \times 0,077 \times (7,85 \times 10^{-3}) \times 15 \times 4 \checkmark$$

= 41,73kW \sqcap (7)

7.5 **Dynamometers to measure brake power:**

- Prony brake ✓
- Electric dynamometer ✓
- Eddy current dynamometer ✓
- Hydraulic dynamometer ✓
- DC dynamometer ✓
- Rope brake ✓

(Any 2 x 1) (2)

(4)

7.6 **Calculations:**

7.6.1 **Torque:**

Force =
$$m \times g$$

= 120×10
= 1200N \checkmark

radius =
$$\frac{500}{1000}$$

= 0,5 m \checkmark

Torque = force
$$\times$$
 radius
Torque = 1200 \times 0,5 \checkmark
Torque = 600Nm \checkmark

7.6.2 Brake power:

Brake power = $2 \times \pi \times N \times T$ Brake power = $2 \times \pi \times \frac{2500}{60} \checkmark \times 600 \checkmark$ Brake power = $157,08 \text{ kW} \checkmark$ (3)

7.6.3 **Mechanical efficiency:**

Mechanical efficiency =
$$\frac{BP}{IP} \times 100$$

$$ME = \frac{157,08}{196} \checkmark \times 100$$

$$ME = 80,14\% \checkmark$$
(2)
[32]

QUESTION 8: MAINTENANCE (SPECIFIC)

NSC - Marking Guidelines

8.1 Gas analyser: High carbon monoxide (CO) ✓ • • High oxygen (O_2) \checkmark High nitrogen oxides (NOx) ✓ High hydrocarbon (HC) ✓ • (Any 3 x 1) (3) 8.2 Cylinder leakage test: Listen for hissing sound at the air intake. ✓ Listen for hissing sound at the exhaust pipe. ✓ Listen for hissing sound in the dipstick hole / oil filler cap. ✓ Look for bubbles in the radiator water. ✓ Listen for hissing sound at the adjacent cylinder spark plug hole. \checkmark • (Any 3 x 1) (3)8.3 **Compression test:** 10% ✓ 8.3.1 (1) 8.3.2 Variation = highestreading-lowestreading =11-8,2 ✓ = 2.8 bar 🗸 OR Variation = $\frac{11 - 8,2}{11}$ \checkmark = 25,5% ✓ (2)8.3.3 Low Compression: Worn compression rings ✓ Worn pistons ✓ Worn cylinders ✓ Leaking inlet valve ✓ Leaking exhaust valve ✓ Blown head gasket ✓

- Cracked cylinder head ✓
- Cracked cylinder ✓
- Cracked cylinder sleeves ✓

(Any 2 x 1) (2)

14

8.3.4 **Corrective measure:** Repair or replace cracked cylinder head. \checkmark Reset or replace or adjust the valves. ✓ Replace cylinder head gaskets. ✓ Replace pistons. ✓ • Repair (bore) or replace cylinder sleeves. ✓ Replace piston rings. ✓ (Any 2 x 1) (2)8.4 Causes of a low oil pressure: • Worn oil pump. ✓ Blocked oil pump/screen in sump. ✓ • Worn main bearings. ✓ Worn big-end bearings. ✓ Worn camshaft bearings. ✓ Pressure after blocked or restricted oil filter. ✓ Oil leaks / Insufficient oil. ✓ Defective oil pressure relief valve. ✓ • Low viscosity. ✓ Dirty or contaminated oil. ✓ • (Any 2 x 1) (2)8.5 Corrective measures with oil if the oil pressure reading is high: Use the correct oil grade. \checkmark • Change the oil with clean oil. \checkmark (2) 8.6 Pre-checks fuel pressure tester: Ensure that the tester can read the pressure of the engine. \checkmark Use the right adaptor for the engine. ✓ Ensure that the rubber pipe is not perished on the tester. \checkmark Ensure that the pressure relieve value is working properly. \checkmark • (Any 3 x 1) (3)8.7 Cooling system pressure test: Renew the gaskets or seals. \checkmark • Renew the faulty water hose. \checkmark • Secure water hose clamps. ✓ • Skim the cylinder head and replace cylinder head gasket. • Renew the water pump. \checkmark • Renew or repair the radiator. ✓ • Renew the welch or core plugs. \checkmark • Renew or repair the interior radiator. ✓ • Renew the heater tap. \checkmark • (Any 3 x 1) (3)

[23]

(6)

QUESTION 9: SYSTEMS AND CONTROL (AUTOMATIC GEARBOX) (SPECIFIC)

9.1 **Double-epicyclic gear system:**

9. 1.1 Labels:

- A. Input shaft/Sun gear shaft ✓
- B. Brake band ✓
- C. Annulus/Ring gear ✓
- D. Planet carrier ✓
- E. Sun gear ✓
- F. Planetary gear ✓

9.1.2 **Operation of this gear system:**

- Sun gears are driven by the input shaft (A). \checkmark
- Annulus (C) is held stationary by its brake bands (B). ✓
- Planetary gears (F) walk around sun gear (E). ✓
- The planet carrier (D) and output main shaft will rotate slowly. ✓

9.2 **Torque converter function:**

Advantages of epicyclic gear trains:			
Oil used in the torque converter:ATF or Automatic transmission fluid ✓(1)			
9.2.4	Impeller 🗸	(1)	
9.2.3	Stator ✓	(1)	
9.2.2	Turbine 🗸	(1)	
9.2.1	One-way clutch on the stator \checkmark	(1)	

- The co-axial arrangement of input shaft and output shaft. ✓
- Load distribution is to several planetary gears. ✓
- High efficiency. ✓
- Several gear ratios can be obtained. ✓
- Longer service life compared to traditional gearboxes for similar load. ✓
- Epicyclic gearbox has a higher torque transmission capability. ✓
- Also has lower inertia. ✓
- Used to obtain higher gear ratios. ✓
- Compact in size / Lighter in design ✓
- Used to obtain variation in direction (reverse). ✓
- Provides for a variation in torque output. ✓
- Smoother operation (quieter/less vibration) compared to manual gearbox. ✓

(Any 3 x 1) (3)[18]

9.3

9.4

QUESTION 10: SYSTEMS AND CONTROL (AXLES, STEERING GEOMETRY AND ELECTRONIC) (SPECIFIC)

Tyre wear:			
10.1.1	Over inflation: Excessive wear in the middle of the tyre. ✓	(1)	
10.1.2	Negative camber: Excessive wear on the inside edge or inside shoulder of the tyre. ✓	(1)	
Purpose	e of wheel alignment angles:		
10.2.1	 Toe-in: Toe-in is used to overcome the tendency of wheels with positive camber ✓ to point outwards. ✓ To overcome the tendency of wheels to move outwards ✓ on a rear wheel drive vehicle. ✓ (Any 1 x 2) 	(2)	
10.2.2	Negative caster: Negative caster ensures easier turning. $\checkmark \checkmark$	(2)	
King pin inclination:			
10.3.1	 Labels: A. King pin inclination (angle) / KPI / Steering axis inclination (angle) / SAI ✓ B. Steering axis centre line / King pin centre line ✓ C. Off set ✓ 	(3)	
10.3.2	Definition: King pin inclination is the inward tilt \checkmark of the top of the king pin. \checkmark	(2)	
10.3.3	No ✓	(1)	
 Shimi Bound Vibration Poor Tyres 	my / wobble ✓ ce ✓ tion on steering ✓ steering control ✓ s wear away faster ✓ ing out of steering arms / tie rod ends / suspension rubbers ✓	(2)	
	10.1.1 10.1.2 Purpose 10.2.1 10.2.2 King pin 10.3.1 10.3.2 10.3.2 10.3.3 Unbalan • Shim • Shim • Shim • Shim	 10.1.1 Over inflation: Excessive wear in the middle of the tyre. ✓ 10.1.2 Negative camber: Excessive wear on the inside edge or inside shoulder of the tyre. ✓ Purpose of wheel alignment angles: 10.2.1 Toe-in: Toe-in is used to overcome the tendency of wheels with positive camber ✓ to point outwards. ✓ To overcome the tendency of wheels to move outwards ✓ on a rear wheel drive vehicle. ✓ (Any 1 x 2) 10.2.2 Negative caster: Negative caster ensures easier turning. ✓ ✓ King pin inclination: 10.3.1 Labels: A. King pin inclination (angle) / KPI / Steering axis inclination (angle) / SAI ✓ B. Steering axis centre line / King pin centre line ✓ C. Off set ✓ 10.3.3 No ✓ Unbalanced wheels: Shimmy / wobble ✓	

10.5	ThrotIdle sManif	te sensors: tle position sensor (TPS) ✓ peed control (ISC) ✓ old absolute pressure (MAP) ✓ air flow meter (MAF) ✓	(Any 3 x 1)	(3)
10.6	• To co	n of the speed control system: ntrol the throttle opening electronically. ✓ ep the vehicle at a constant speed. ✓		(2)
10.7	Alternate 10.7.1	br: Label: A. Slip ring ✓ B. Brushes ✓ C. Pole pieces ✓		(3)
	10.7.2	Function of the rectifier: Converts alternating current (AC) ✓ to direct cu used by the battery and electrical components.		(2)
	10.7.3	 Methods to increase the output frequency of the Increase the turns of wire / windings on the state Increase the amount of magnetic poles. ✓ Increase the rotational frequency of the rotor. ✓ 		(2)
10.8	Oxida	: converter: ition ✓ ction ✓		(2)
10.9	A. Fuel i	ezo injector: ntake/ inlet		(2)
10.10	 Functions of the check valve: It maintains the pressure in the fuel. ✓ Prevents vapour lock. ✓ 			
	 Ensur 	es easier starting. ✓	(Any 2 x 1)	(2) [32]
			TOTAL:	200