

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS: 200

These marking guidelines consist of 16 pages.

Please turn over

SECTION A

QUESTION 1

- 1.1 1.1.1 C√√
 - 1.1.2 A√√
 - 1.1.3 A√√
 - 1.1.4 D√√
 - 1.1.5 C√√
 - 1.1.6 D√√
 - 1.1.7 B√√
 - 1.1.8 D√√
 - 1.1.9 C√√
 - 1.1.10 A/D√√

(20)

(10)

- 1.2 1.2.1 Heat/steam/warmth/magma ✓✓
 - 1.2.2 moveable√√
 - 1.2.3 standardisation ✓ ✓
 - 1.2.4 more√√
 - 1.2.5 Battery/Accumulator√√
- 1.3 1.3.1 G√√
 - 1.3.2 D√√
 - 1.3.3 F√√
 - 1.3.4 B/H ✓ ✓
 - 1.3.5 A ✓ ✓

(10)

TOTAL SECTION A: 40

Copyright reserved

(2)

SECTION B

QUESTION 2: MATERIALS AND STRUCTURES

2.1	The alloy metal that is specifically used to manufacture the products and a
	reason why the metal is used.

2.1.1 Wine tanks

Stainless steel.✓

- Resistant to air, water and many chemical acids and alkali.✓
- Resistant against corrosion.✓
- Can be welded well. \checkmark (Any 1) (2)

2.1.2 Fittings for hot-water copper pipes

Brass. ✓

- Strength ✓
- Machinability√
- Wear resistance√
- Hardness√
- Corrosion resistance ✓ (Any 1)

2.1.3 Hammers that can be used in explosive atmosphere

Bronze√

- Does not generate sparks✓
- Low friction ✓ (Any 1) (2)

2.2 **ONE example where the following materials will be used on a farm.**

2.2.1 High-tensile steel

- Tow bar
- Shafts√
- Gears√
- Crowbar√ (Any 1) ⁽¹⁾

2.2.2 Cast iron

- Engine block√
- Differential of the tractor√
- Cast iron pots ✓
- Tractor weights ✓
- Brake drum $\sqrt{}$
- Hubs for farm equipment ✓ (Any 1) ⁽¹⁾

2.3 **Description of the annealing process of copper.**

Heat the metal to $500-550^{\circ}C.\checkmark$ Then cool it in the air or sand. \checkmark (2)

2.4	2.4.1	The TWO most important aspects that must be considered when an adhesive is chosen to repair the water trough.			
		 Type of the material to be joined.✓ Conditions under which this joint will be used.✓ 	(2)		
	2.4.2	Process of preparing the water trough before the adhesive is applied.			
		Clean the surface area around the crack \checkmark and sand it lightly until there are no more signs of dirt, clean before applying the adhesive. \checkmark	(2)		
	2.4.3	TWO methods used to join fibreglass parts.			
		 Pop rivet√ Bolt and nut√ Screws√ 	(2)		
	2.4.4	TWO methods of colouring a fibreglass trough.			
		 Painting√ Dying√ 	(2)		
2.5	The effect of extreme heat on the following material.				
	2.5.1	Bakelite			
		 No effect. ✓ Will become extremely hot. ✓ Will discolour. ✓ (Any 1) 	(1)		
	2.5.2	Perspex			
		 It will easily change shape when heated, because Perspex is not heat resistant.✓ 			
		 It will burn.✓ It will melt✓ (Any 1) 	(1)		
	2.5.3	Silicon			
		 Silicon will melt. ✓ Will deform.✓ (Any 1) 	(1)		
2.6	Descri	ption of the friction ability of Vesconite.			
	•	Low static and dynamic friction \checkmark No friction in tough working environments whether dry or wet, lightly or heavily loaded. \checkmark	(2)		

Copyright reserved

2.7 2.7.1 THREE design requirements prescribed for warning signs on electric fences.

- The signs must be at least 100 mm x 200 mm.✓
- The background color of both sides must be yellow.✓
- The inscription must be black and must read 'BE AWARE– ELECTRIC FENCE'.✓
- The inscription must be clear, inscribed on both sides and have a height of at least 25 mm.✓
- At least two languages must be visible on the sign. \checkmark (Any 3) (3)

2.7.2 **TWO situations where an electrical fence can be used on a farm.**

- Protection ✓
- Temporary fences ✓
- Dangerous animals, e.g.lions√
- Around the farm perimeter (Any 2)

2.7.3 **TWO alternative energy sources that can be used to provide energy for an electrical fence.**

- Wind✓
- Solar√
- Hydro electric√
- Generator√
- Battery ✓

2.8 **THREE components needed to create a fire.**

- Material that can burn ✓
- Oxygen√
- Any heat source ✓ (lightning / friction, matches, lighter) (3)

2.9 **TWO** reasons for using resin casting as an insulating material when joining THREE phase electrical wires.

- Watertight√
- Non-conductor of electricity
- Toughness√
- Prevents corrosion/ rust✓

(2) **[35]**

(Any 2)

(2)

(2)

6 NSC – Marking Guidelines

QUESTION 3: ENERGY

3.1 3.1.1 The energy source that makes use of a generator.

Source C✓

(1)

(1)

(1)

(2)

3.1.2 Description of the working principles of energy source B.

- Cold water passes through glass tubes where it is heated by sun • energy.√
- The heated water enters the geyser through a closed copper pipe • network that runs through the geyser. \checkmark
- The hot water inside the copper pipes heats up the cold water • inside the geyser. \checkmark
- The cooled water flows downwards back to the solar tubes where • it is reheated.√ (Any 3) (3)

Alternative geyser system.

- The sun heats up the liquid in the glass tubes \checkmark •
- That heat up the element.✓
- The copper element heats up the water. \checkmark

3.1.3 The device that must be connected to energy source A to change the direct current to alternating current.

Inverter **√**

3.1.4 Identify energy source C.

Concentrated solar/Solar plant/Sun tower✓

3.2 TWO disadvantages of a wind turbine's blades turning too fast.

- The blades could be damaged.✓
- The rotor experiences too much strain. \checkmark •
- The structure could collapse.
- Noise pollution.✓
- Bird strikes

THREE geographical challenges that may arise during a survey for a 3.3 geothermal energy power station.

- Is the rock soft enough to drill through?✓ •
- Do the rocks deep down contain sufficient heat?✓ •
- Will this heat be sustainable for a significant amount of time? \checkmark •
- Is the environment fit for a power plant? \checkmark •
- Volcanic activities ✓ •
- Accessibility/Difficult to locate ✓ •
- Availability of water •

(3) (Any 3)

(Any 2)

3.4 3.4.1 An alternative racing fuel that can be used to supplement petroleum.

Methanol√

(1)

3.4.2 THREE materials used to manufacture the alternative fuel (Methanol).

- Woody plant fibre ✓
- Methane gas in landfills ✓
- Coal√
- Natural gas
- Fermented waste products such as sewage and manure ✓ (Any 3) (3)

3.5 3.5.1 THREE disadvantages associated with a hydroelectric power plant.

- Limited plant locations ✓
- High initial costs ✓
- Carbon emission ✓
- Flood risk√
- Susceptible to earthquakes/tremors√
- Limited water resources
- Affects marine life ✓
- High costs ✓

(Any 3) (3)

3.5.2 **TWO reasons why hydroelectric power plants are limited in South Africa.**

- Water scarcity ✓
- Inadequate water flow ✓
- Non-sustainable water in rivers✓
- Inadequate land gradient
- High costs ✓

(Any 2) (2) [20]

4.1.1

4.1

4

QUESTION 4: SKILLS AND CONSTRUCTION PROCESSES

Parts A and B.

		 A- Earth clamp/Clamp√ B- Welding/gun/torch√ 	(2)
	4.1.2	The apparatus that can be attached for welding aluminium.	
		Push Pull torch✓	(1)
	4.1.3	TWO gases that can be used with MIG welding.	
		 Argon√ Helium√ Mixture of Co2 and Argon√ (Any 2) 	(2)
	4.1.4	IHREE different metals that can successfully be welded with the MIG-welding machine.	
		 High alloy steel (stainless alloys) ✓ Aluminium✓ Mild steel✓ 	(3)
4.2	4.2.1	The material used for part A.	
		 Tungsten√ Copper mounted hafnium√ Zirconium√ (Any 1) 	(1)
	4.2.2	Description of the plasma cutting process.	

The process involves using a tungsten electrode, \checkmark and high pressure plasma \checkmark (which is gas in an ionized state) to generate and carry an electrical arc between a copper nozzle and work piece. \checkmark The electrical arc performs the cutting, but the pressurized plasma helps to keep the cut cleared by removing the dross (metal impurities generated by the cutting). \checkmark (Any 3)

4.3 **TWO types of metals that can be cut by using the oxy-acetylene.**

- Mild steel ✓
- Cast iron√
- Stainless steel
- Any ferrous metals ✓

(Any 2) (2)

(3)

(5)

(5)

(3)

(3)

4.4 Description of the process of shutting down an oxy-acetylene flame and bleeding the system.

- Turn off the acetylene valve on the torch handle. This will extinguish the flame. ✓
- Turn off the oxygen valve on the torch handle.✓
- Shut/close the main cylinder valves clockwise on the top of both gas cylinders. ✓
- Now open the two values on the torch handle to 'bleed' the system. \checkmark
- Turn both the oxygen and acetylene regulator handles counter-clockwise until they are loose. ✓
- Close both valves on the torch handle. ✓
- Put the handle and tips away, and return the gas cylinders and their hoses to their proper storage area. ✓ (Any 5)

4.5 4.5.1 **Description of the process of vertical up arc welding.**

- A special electrode is used for vertical welding with an arc welder, makes the process easier as it 'freezes' more quickly.✓
- Amperage can be reduced slightly from the normal down hand setting. \checkmark
- Tip of the electrode must be pointed upwards, so that the electrode forms an angle of up to 30° with the horizontal plane.✓
- Arc must be kept short and the speed must be just sufficient to prevent the molten metal from the puddle to run down.✓
- When welding up, very little lateral movements of the electrode must be made.✓

4.5.2 Draw THREE different types of welding runs used for vertical welding.

(Any 3 drawings) ✓✓✓

4.6 4.6.1 Calculation of the volume of concrete needed. Formula: Volume= Length x width x height

 $2500 \text{ mm x} 1200 \text{ mm x} 250 \text{ mm} \checkmark = 750\ 000\ 000 \checkmark \text{mm}^3 \checkmark$

OR

 $2,5 \text{ m x } 1,2 \text{ m x } 0,25 \text{ m} \checkmark = 0,750 \checkmark \text{m}^3 \checkmark$

(Allocate full marks if only the final answer is given)

9

4.6.2 **Design and sketch of a shelter to protect the generator from** weather conditions. Show at least TWO measurements.

Roof and construction ✓ ✓	(2)
Poles (Uprights)✓	(1)
Measurements√	(1)
Neatness✓	(1)

(5) **[35]**

Copyright reserved

(Any 2)

QUESTION 5: TOOLS, IMPLEMENTS AND EQUIPMENT

5.1 5.1.1 **TWO measures the farmer can apply to ensure that the maize will** be harvested on time.

- Making use of contractors.✓
- Working longer hours.✓
- Making use of bigger harvesting machines.
- Harvest until the rain start. ✓

5.1.2 An alternative method that can be used, other than the combine harvester and justification.

Hand harvesting/You can continue to harvest by hand whilst it is raining/ Use a tractor drawn harvester.✓

Justification: Combine harvester will be stuck in the field when soil is wet. \checkmark

(Any 1) (2)

(2)

5.2 5.2.1 **THREE aspects to bear in mind when buying a new baler.**

- Price√
- Local maintenance services ✓
- Parts locally available ✓
- Driving power needed for operation ✓
- Type of baler ✓
- Ease of operation ✓
- Type of binding technique ✓

5.2.2 **THREE points to consider before buying a second-hand baler.**

- Reliability of the agent.✓
- Spare parts easily available.✓
- Well proven model.✓
- Guarantee from agent/seller.✓
- General wear and tear.✓

(Any 3) (3)

(Any 3)

5.3 5.3.1 Less space-consuming bale.

A√

(1)

(3)

5.3.2 Justification for answer in QUESTION 5.3.1

More bales can be stacked on a truck. \checkmark		
No gaps between the bales.✓		(1)
Bales are compact√	(Any 1)	

5.3.3 **The bale that can be wrapped.**

		(1)
	A or B✓	(')
5.3.4	A reason why baling process B can be used up until raining.	
	Water runs down the bale/ bale can be stored outside. \checkmark	(1)
5.3.5	FIVE round-baler safety tips to young upcoming farmers.	
	 Familiarise yourself with the operator's manual. 	

- Adequate training must take place.✓
- Ensure all safety screens are in place.✓
- Be watchful when backing up as baler is bulky and reduces vision to the rear.✓
- Avoid sharp turning.✓
- Assure no one is near the rear gate when it is being raised and lowered.✓
- Keep everyone clear of the rear of the baler during unloading.✓
- Large round bales can roll after discharge when on hilly terrain.✓
- Before servicing, cleaning, or adjusting a round baler, disengage the tractor PTO.✓
- Block the gate before working under it. Use the safety lock system for the baler.✓
- Keep the PTO properly shielded.✓
- Never allow passengers to ride on the baler during operation or transport.✓
- Be extremely cautious when operating a baler on uneven or hilly terrain. \checkmark
- Raise the pickup to clear humps and obstacles when passing over uneven terrain. ✓ (Any 5)

5.4 5.4.1 The type of belt best fitted on the pulley system and ONE reason for identifying it.

V-belts√

AND

- Does not easily slip off.✓
- Draw tighter around pulleys.✓
- No lubrication needed.✓
- Lasts longer.✓

5.4.2 **Changing the direction in which pulley A rotates.**

By twisting the belts.✓		
Switch the motor to the other side.✓		
Change the polarity of the motor. \checkmark	(Any 1)	(1)

Please turn over

(Any 1)

(5)

(2)

5.5 5.5.1 **The different types of gears, A and B.**

- A- Straight cut gear/ Spur gear√
- B- Helical gear√

5.5.2 **Calculation and ratio of gear connection.**

Driver gear (128 teeth) Driven gear (16 teeth)

Driver gear Driven gear

= 128÷16 ✓ = 8:1 √√

(3)

(2)

5.5.3 **ONE advantage and ONE disadvantage of each gearing system.**

GEAR	ADVANTAGE	DISADVANTAGE
	Easy to	Noisy.✓
Spur	manufacture.√	Cannot use in synchronised
gear	Cheaper to	gearbox.✓
(A)	manufacture.√	Difficult to mash.✓
	(Any 1)	Subject to wear.✓ (Any 1)
	Lasts longer.√	Subjected to side thrust.✓
Helical	Easy to mash.√	More expensive to
gear	Less wear.√	manufacture.✓ (Any 1)
(B)	More contact point	
	of teeth. ✓ (Any 1)	

5.5.4 **The gear system to improve speed.**

	A√✓	(2)
5.6.1	Cylinder types.	
	A- Double (action) cylinder✓ B- Single (action) cylinder✓	(2)
5.6.2	The cylinder best fitted on a front-end loader.	
	A- Double action cylinder ✓	(1)
5.6.3	Explanation to support answer given in QUIESTION 5.6.2.	
	It enables the operator to set the control lever in a down \checkmark and upward thrust position. \checkmark	(2)

5.6

[40]

5.6.4 **TWO reasons to justify the use of transmission oil in a tractor** hydraulic system.

- Not compressible ✓
- Good lubrication qualities ✓
- Not volatile ✓
- Relatively cheap ✓ (Any 2) (2)

QUESTION 6: WATER MANAGEMENT

6.1	Irrigatio	on components and their function.	
	6.1.1	Irrigation timer/Irrigation controller/Smart controller✓	(1)
	6.1.2	An irrigation timer controls the flow of water by turning on and off. \checkmark Used for scheduling irrigation. \checkmark (Any 1)	(1)
	6.1.3	Electronic valve/ Solenoid valve/ Irrigation valve	(1)
	6.1.4	An irrigation valve regulates the one-directional flow of water in an irrigation system. \checkmark	(1)
	6.1.5	Sprinkler/sprayer✓	(1)
	6.1.6	An irrigation sprinkler drops water onto the land, mimicking the effects of rain. \checkmark	(1)
6.2	6.2.1	TWO reasons for determining the flow rate of the pump.	
		 For correct calibrating of the sprayers.√ Effective scheduling of irrigation.√ To prevent the over/under utilisation of the water source. (Any 2) 	(2)
	6.2.2	Calculation of the flow rate.	
		Flow rate = Content ÷ Time = 10 000÷8✓ = 1 250 Litres/minute✓	(3)
6.3	Type of	f device suitable to send the location.	
	• GPS	S√	

- Cell phone
 ✓
- Tablet
- Tablet (Any 1) (1)

6.4	6.4.1	The irrigation system, best suitable for a land ag slopes with motivation.	jainst steep	
		• B√		
		AND		
		 Prevents run off water.√ Pivots mainly used on level surfaces.√ Does not cause soil erosion.√ 	(Any 2)	(3)
	6.4.2	Reasons for preferring irrigation system A.		
		 Not necessary to remove system.√ Can work with implements on land.√ Animals cannot damage system.√ Less time consuming.√ Less labour intensive.√ Remote control/management.√ Variable rate irrigation.√ 	(Any 2)	(2)
6.5	6.5.1	The design error of the septic tank.		
		The outlet is higher than the inlet.✓ No partition wall.✓ There will be a backflow of waste water.✓	(Any 2)	(2)
	6.5.2	The importance of installing a manhole in a septic tan	k.	
		 General maintenance√ Removing of solids√ Inspection√ Adding bacteria√ Unclogging of in/outlet√ 	(Any 4)	(4)
	6.5.3	Suitable drainage system to be connected to the soutlet.	septic tanks	
		French drain√ Pebble/stone drain√ Drainage field√	(Any 1)	(1)
6.6	The ma	ain cause of blockages in a town's sewage system.		
	 The The Mis Roo Too 	e disposal of non-degradable materials. e lack of maintenance. sing manhole lids. ot obstructions. o many people using the system. √	(Any 1)	(1)

6.7	6.7.1	The type of filter to connect with a water softener.	
		A✓	(1)
	6.7.2	The filter that is installed to a micro irrigation system.	
		F✓	(1)
	6.7.3	ONE example where the filter shown in C will be used.	
		Micro irrigation✓ Swimming pool✓ (Any 1)	(1)
	6.7.4	Correct statement.	
		Filtration always takes place from the outside \checkmark to the inside \checkmark of the filter.	(2) [30]
		TOTAL SECTION B: GRAND TOTAL:	160 200