

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

SENIOR CERTIFICATE EXAMINATIONS/ NATIONAL SENIOR CERTIFICATE EXAMINATIONS

MECHANICAL TECHNOLOGY: WELDING AND METALWORK

2022

MARKING GUIDELINES

MARKS: 200

These marking guidelines consist of 19 pages.

Copyright reserved

Please turn over

QUESTION 1: MULTIPLE-CHOICE QUESTIONS (GENERIC)

1.1	A✓	(1)
1.2	B✓	(1)
1.3	C✓	(1)
1.4	D✓	(1)
1.5	A✓	(1)
1.6	C✓	(1) [6]

QUESTION 2: SAFETY (GENERIC)

Mechanical Technology: Welding and Metalwork

2.1 Rated speed of a grinding wheel:

Because the wheel could burst/break if it turns faster than its revolution range. / Avoid an accident. ✓

3 SC/NSC – Marking Guidelines

Effectiveness of the grinding process will be compromised. \checkmark (Any 1 x 1) (1) •

2.2 Safety precautions of a band saw in operation:

- Never leave the band saw unattended. \checkmark •
- Use a push stick when cutting. \checkmark •
- Hold the work piece firmly and flat on the table. \checkmark •
- Don't adjust the machine while working. \checkmark •
- Don't open any guard while the machine is on. \checkmark •
- Make relief cuts before cutting tight curves. ✓ •
- Don't force the material into the blade. \checkmark •
- Keep hands clear from the action point. \checkmark •
- Keep hands braced against the table. \checkmark •
- Keep your hands on either sides of the blade and not in line with the • cutting line and the blade. \checkmark
- Keep loose clothing clear from action point. ✓ (Any 2 x 1) (2) ٠

Stages in which first aid is applied: 2.3

Examination ✓ • Diagnosis ✓ • (3)Treatment ✓

2.4 Causes of accidents:

- Unsafe acts ✓
- Unsafe conditions ✓

2.5 TWO advantages of the product layout:

- Handling of material is kept to a minimum. \checkmark •
- Time period of manufacturing cycle is less. \checkmark •
- Production control is almost automatic. \checkmark .
- Control over operations is easier. \checkmark
- Greater use of unskilled labour is possible. ✓ •
- Less total inspection is required. ✓ •
- Less total floor space is needed per unit of production. ✓ (Any 2 x 1) (2) •

[10]

(2)

DBE/2022

QUESTION 3: MATERIALS (GENERIC)

3.1 **Tempering:**

Tempering is a process generally applied to steel to relieve the strains/brittleness/improve ductility \checkmark induced during the hardening process. \checkmark (2)

3.2 Annealing:

- To relieve internal stresses ✓ that may have been set up during working of metal.
- To soften steel ✓ in order to facilitate the machining process.
- To refine their grain structure. ✓
- Reduce brittleness. ✓
- Make the steel ductile. \checkmark (Any 3 x 1) (3)

3.3	 Aboy 	ising temperature: ve ✓ higher/upper critical temperature ✓ ve ✓ AC ₃ line. ✓	(Any 1 x 2)	(2)
3.4	Spark p	attern for carbon steels:		
	3.4.1	High-carbon steel ✓		(1)
	3.4.2	Low-carbon steel / Mild steel \checkmark		(1)
	3.4.3	Cast-iron ✓		(1)
3.5	 Carbon diagram: A. Temperature range / °C ✓ B. AC₃ line / Higher/upper critical temperature line ✓ C. AC₁ line / Lower critical temperature line ✓ 			

D. Carbon content / % carbon 🗸

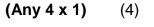
(4) **[14]**

QUESTION 4: MULTIPLE-CHOICE QUESTIONS (SPECIFIC)

4.1	A✓	(1)
4.2	C✓	(1)
4.3	A ✓	(1)
4.4	A✓	(1)
4.5	A✓	(1)
4.6	C✓	(1)
4.7	D✓	(1)
4.8	D✓	(1)
4.9	D✓	(1)
4.10	C✓	(1)
4.11	C✓	(1)
4.12	B✓	(1)
4.13	A ✓	(1)
4.14	D✓	(1) [14]

Please turn over

QUESTION 5: TERMINOLOGY (TEMPLATES) (SPECIFIC)

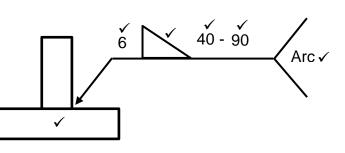

5.1 Template machine tools:

- Planer ✓ •
- Circular saw ✓ •
- Drilling machine ✓ •
- Jig saw ✓ •
- Sanding machine ✓ •
- Shears for cutting cardboard ✓ •
- Any other appropriate machine tools. \checkmark •

5.2 **Roof truss:**

- A. Purlin ✓
- B. Rafter ✓
- C. Bracing member ✓
- D. Main tie / Tie beam ✓
- E. Gusset plate ✓

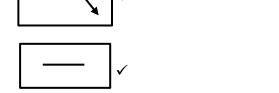
5.3 Welding Symbol:



(5)

(6)

(1)


(1)

5.4 Supplementary symbols:

5.4.1

5.4.3

(1)

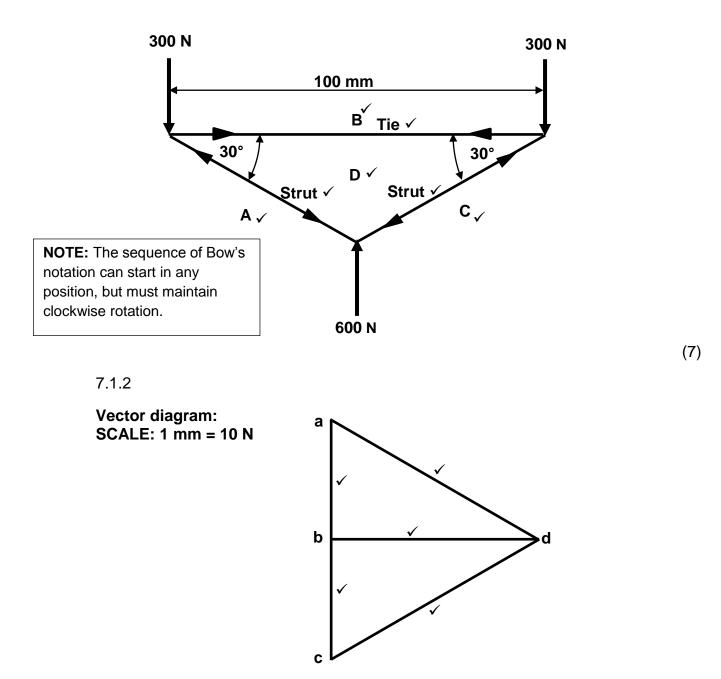
5.5 **Steel ring material:**

Mean \emptyset = Outside Diameter – plate thickness

Mean circumference =
$$\pi \times mean\emptyset$$

$$= \pi \times 570 \quad \checkmark$$
$$= 1790,71 \text{ mm}$$
$$OR \quad \checkmark$$
$$= 1791 \text{ mm}$$

(5) **[23]**


QUESTI	ON 6: TOOLS AND EQUIPMENT (SPECIFIC)	
6.1	Manual guillotine: A – Spring loaded down pedal/Foot pedal ✓ B – Cutting table ✓ C – Pressure plate/Blade guard ✓	(3)
6.2	 Tap wrenches: T- handle / Double handle tap wrench. ✓ Single handle tap wrench/Ratchet tap wrench. ✓ 	(2)
6.3	Angle grinders: • Cutting ✓ • Grinding ✓ • Polishing ✓ • Sanding ✓ (Any 3 x 1)	(3)
6.4	Advantages of Inverter: Inverters are able to weld a wider variety \checkmark of materials \checkmark than conventional AC welding machines.	(2)
6.5	 Spot welding: Does not use consumable electrodes ✓ Efficient ✓ Quick welding process ✓ Ideal for mass production ✓ Cost effective ✓ Ideal for lightweight/thinner material ✓ It can be used on a variety of metals ✓ Ensure uniform joints ✓ 	(2)
6.6	 MIG welding procedures: Forehand ✓ Perpendicular ✓ Backhand ✓ 	(3)
6.7	Plasma cutting: Plasma cutting is a process that cuts through electrically conductive \checkmark material by means of an accelerated jet \checkmark of hot plasma. \checkmark	(3) [18]

alwork 9 SC/NSC – Marking Guidelines

QUESTION 7: FORCES (SPECIFIC)

7.1 Steel framework:

7.1.1 Space diagram: SCALE: 10 mm = 1 m

MEMBER	MAGNITUDE
BD	510 N ✓
CD	590 N ✓
AD	590 N ✓

NB: Marker must redraw the diagrams according to the given scale. When marking, use a tolerance of ± 2 mm.

7.2 **Stress and Strain:**

7.2.2

7.2.1 Cross sectional area:
Area =
$$\frac{\pi (D^2 - d^2)}{4}$$

= $\frac{\pi (0,06^2 - 0,05^2)}{4}$
= 8,64×10⁻⁴m² ✓ (3)

7.2.3 Strain:

Stress:

Stress = $\frac{Force/Load}{Force/Load}$

=

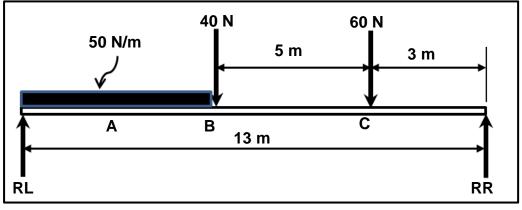
Area 500 🗸

= 0,58 MPa ✓

8,639×10⁻⁴ ✓ = 578770,6911 Pa

$$E = \frac{\text{Stress}}{\text{Strain}}$$

$$\text{Strain} = \frac{\text{Stress}}{E} \checkmark$$


$$= \frac{578770,6911}{90 \times 10^9} \checkmark$$

$$= 6,43 \times 10^{-6} \checkmark$$

(4)

(3)

7.3 Moments:

7.3.1 Reactions at LR and RR: Calculate LR Take moments about RR

> ΣRHM = ΣLHM LR×13 = (250×10,5)+(40×8)+(60×3) = 2625+320+180 = $\frac{3125}{13}$ LR = 240,38N ✓

Calculate RR Take moments about LR

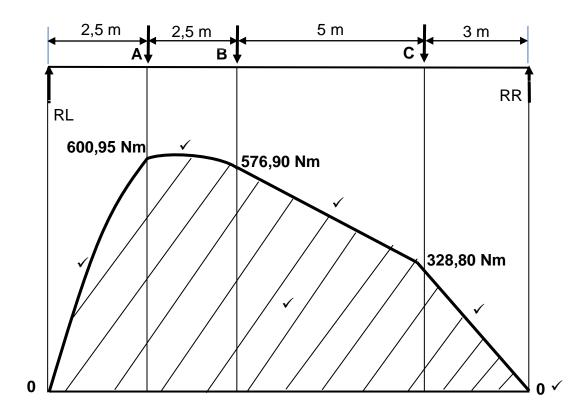
 $\Sigma LHM = \Sigma RHM$

$$RR \times 13 = (60 \times 10) + (40 \times 5) + (250 \times 2,5)$$

= 600 + 200 + 625
= $\frac{1425}{13}$
RR = 109,62N \checkmark

(8)

(6)


7.3.2 **BENDING MOMENTS:**

$$BM_{A} = (240,38 \times 2,5) \checkmark$$
$$= 600,95 \text{ Nm } \checkmark$$

$$BM_{B} = (240,38 \times 5) - (250 \times 2,5) \checkmark$$

= 1201,90 - 625
= 576,90 Nm \checkmark

$$BM_{c} = (240,38 \times 10) - (250 \times 7,5) - (40 \times 5)^{\checkmark}$$

= 2403,8 - 1875 - 200
= 328,80 Nm \checkmark

7.3.3 BM diagram: SCALE: 1 mm = 10 Nm

NB: Marker must redraw the diagrams according to the given scale.

(6) **[45]**

QUESTION 8: JOINING METHODS (INSPECTION OF WELDS) (SPECIFIC)

8.1 Weld gauge:

To check:

- angle of preparation. ✓
- weld alignment. ✓
- fillet weld leg length/dimensions. ✓
- excess weld metal. ✓
- fillet weld throat. ✓
- undercut. ✓
- for porosity. ✓

8.2 Causes of welding defects:

8.2.1 **Incomplete penetration:**

- Too low welding current/amperage ✓
- Too slow travel speed ✓
- Incorrect torch angle ✓
- Insufficient root gap ✓
- Poor edge/joint preparation ✓
- Excessive root gap ✓
- Too fast travel speed ✓
- Too large electrode diameter ✓
- Arc length too long ✓
- Wet/contaminated electrodes ✓

8.2.2 Welding spatter:

- Disturbance in the molten weld pool \checkmark
- Too low welding current/amperage ✓
- Too high welding current/amperage ✓
- Arc length too long ✓
- Wet/contaminated electrode ✓
- Wrong polarity ✓
- Arc length too short ✓
- Incorrect type of electrode used ✓
- Incorrect included angle ✓
- Too fast travel speed ✓
- Surface contamination ✓
- Erratic wire feeding ✓

(Any 2 x 1) (2)

(Any 4 x 1) (4)

(Any 2 x 1) (2)

8.3 **Prevention of welding defects:**

8.3.1 **Porosity:**

- Cleaning the welding surface ✓
- Ensuring that arc welding electrodes are dry ✓
- Do not welding in a windy condition ✓
- Insufficient root gap ✓
- Ensure that the shielding gas supply is not interrupted ✓
- Use correct type of electrode ✓
- Reduce arc distance/length ✓
- Reduce arc travel speed \checkmark (Any 2 x 1) (2)

8.3.2 Undercutting:

- Maintain correct arc travel speed. ✓
- By raising arc voltage. ✓
- Using a leading electrode/torch angle. ✓
- Reduce arc length \checkmark (Any 2 x 1) (2)

8.4 **Types of flames:**

8.4.1	Neutral flame 🗸	(1)
8.4.2	Carburising flame ✓	(1)

8.4.3 Oxidising flame ✓

8.5 Weld craters:

- Formed at the end of a weld run ✓ when the electrode ✓ is removed too soon. ✓
- Not allowing ✓ enough filler ✓ material to fill the crater. ✓
- Having \checkmark a too big/erratic \checkmark weaving action. \checkmark (Any 1 x 3) (3)

8.6 Nick-break test:

- Make a hacksaw cut at both edges, through the center of the weld. \checkmark
- Place specimen on two supports/bench vice. ✓
- Use a sledgehammer to break the specimen in the area of the cuts. \checkmark
- Inspect the exposed weld metal in the break ✓ for incomplete fusion, slag inclusion (or other welding defects). ✓

(5) **[23]**

(1)

QUESTION 9: JOINING METHODS (STRESSES AND DISTORTION) (SPECIFIC)

9.1	Elastic deformation: It is the ability of a joint/material to return to its original position/dimensions \checkmark after the stresses have been relieved. \checkmark (2)			
9.2	It is a forr	e on steel: n of plastic deformation where the metal has deformed ✓ as a result ction on cooling. ✓	(2)	
9.3	Distortion:			
	9.3.1	Transverse shrinkage ✓	(1)	
	9.3.2	Longitudinal shrinkage ✓	(1)	
9.4	Effects of shrinkage:			
	9.4.1	Electrode size:		
		 Larger electrode size ✓ requires higher current and causes higher welding temperature ✓ that causes more deformation / shrinkage. Smaller electrode size ✓ requires lower current and causes lower welding temperature ✓ that causes less deformation / shrinkage. (Any 1 x 2) 	(2)	
	9.4.2	 Welding speed: Decreased ✓ welding speed tends to increase localised heat that increases distortion. ✓ Increased ✓ welding speed tends to decrease localised heat that decreases distortion. ✓ (Any 1 x 2) 	(2)	
9.5	It increas	ntages of using jigs: es ✓ internal stresses ✓ in the welded joint because the metal's nt is restricted. ✓	(3)	
9.6	Carbon composition of steels:			
	9.6.1	Tool steel: ● 0,71 – 1,5% ✓	(1)	
	9.6.2	Spring steel: ● 0,31 - 0,70% ✓	(1)	
	9.6.3	Mild steel: • 0,07 – 0,30% ✓	(1)	

9.7 **Quenching mediums:**

- Water 🗸
- Oil ✓
- Brine (salt and water) ✓
- Molten metal salts ✓
- Sand ✓
- Air ✓
- Ash ✓
- Lime ✓
- Molten lead ✓
- Infused nitrogen air ✓

(Any 2 x 1) (2) [18]

(Any 3 x 1)

(Any 3 x 1)

(Any 2 x 1)

(3)

(3)

(2) **[8]**

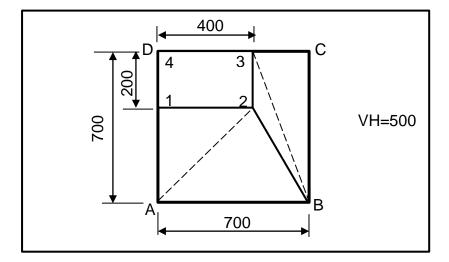
QUESTION 10: MAINTENANCE (SPECIFIC)

Pedestal drill:

- Rusting of components will occur ✓
- Movement between parts will be affected \checkmark
- Excessive wear and seizure of moving parts ✓
- Excessive heat generation ✓

10.2 **Overloading on a bench grinding machine:**

- Resulting in malfunction of the machine ✓
- Excessive wear and reduction of machine lifespan \checkmark
- Damage to grinding wheel ✓
- Damage to bearing on shaft ✓
- Damage to workpiece ✓


10.3 General maintenance guidelines:

- The machine should be tested for correct operation. \checkmark
- All guards must be in place and serviceable. \checkmark
- The machine must be securely fixed to the floor. \checkmark
- All bolts, nuts and grub screws must be in place and tight. \checkmark
- The machine must be in a clean condition. \checkmark
- Lubrication points should be serviced. \checkmark
- All moving parts should move freely. ✓

11.1 **Transformers:**

Transformers are used to connect \checkmark ducting sections \checkmark of dissimilar shapes \checkmark to each other.

11.2 **Hopper:**

11.2.1 Square to rectangular ✓ hopper off ✓ centre

11.2.2 True length A-2:

$$A - 2 = \sqrt{500^{2} + 400^{2} + 500^{2}}$$

= $\sqrt{250000 + 160000 + 250000}$ \checkmark
= 812,4 mm \checkmark (5)

11.2.3 **True length B-2:**

$$B-2 = \sqrt{500^{2} + 300^{2} + 500^{2}}$$

= $\sqrt{250000 + 90000 + 250000}$ \checkmark
= 768,11 mm \checkmark (5)

(2)

(3)

11.3 **Truncated cone:**

11.3.1 True length: A- B:

$$A - B = \frac{\pi \times D}{12} \checkmark$$
$$= \frac{\pi \times 920}{12} \checkmark$$
$$= 240,85 \text{ mm}$$
$$= 241 \text{ mm} \checkmark$$

11.3.2 **True length: 0-1:**

$$0-1 = \frac{\pi \times D}{12} \quad \checkmark$$
$$= \frac{\pi \times 860}{12} \quad \checkmark$$
$$= 225, 15 \,\text{mm}$$
$$= 225 \,\text{mm} \quad \checkmark$$

(3) **[21]**

(3)

TOTAL: 200