

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

SENIOR CERTIFICATE EXAMINATIONS/ NATIONAL SENIOR CERTIFICATE EXAMINATIONS

MECHANICAL TECHNOLOGY: FITTING AND MACHINING

2022

MARKING GUIDELINES

MARKS: 200

These marking guidelines consist of 26 pages.

Copyright reserved

Please turn over

QUESTION 1: MULTIPLE-CHOICE QUESTIONS (GENERIC)

1.1	A✓	(1)
1.2	B✓	(1)
1.3	C✓	(1)
1.4	D✓	(1)
1.5	A✓	(1)
1.6	C✓	(1) [6]

QUESTION 2: SAFETY (GENERIC)

2.1 **Rated speed of a grinding wheel:**

- Because the wheel could burst/break if it turns faster than its revolution range. / Avoid an accident. ✓
- Effectiveness of the grinding process will be compromised. \checkmark (Any 1 x 1) (1)

2.2 Safety precautions of a band saw in operation:

- Never leave the band saw unattended. ✓
- Use a push stick when cutting. ✓
- Hold the work piece firmly and flat on the table. ✓
- Don't adjust the machine while working. ✓
- Don't open any guard while the machine is on. ✓
- Make relief cuts before cutting tight curves. ✓
- Don't force the material into the blade. ✓
- Keep hands clear from the action point. \checkmark
- Keep hands braced against the table. ✓
- Keep your hands on either sides of the blade and not in line with the cutting line and the blade. ✓
- Keep loose clothing clear from action point. \checkmark (Any 2 x 1) (2)

2.3 **Stages in which first aid is applied:**

Examination ✓ Diagnosis ✓ Treatment ✓ (3)

2.4 **Causes of accidents:**

- Unsafe acts ✓
- Unsafe conditions ✓

2.5 **TWO advantages of the product layout:**

- Handling of material is kept to a minimum. ✓
- Time period of manufacturing cycle is less. ✓
- Production control is almost automatic. ✓
- Control over operations is easier. ✓
- Greater use of unskilled labour is possible. ✓
- Less total inspection is required. ✓
- Less total floor space is needed per unit of production. \checkmark (Any 2 x 1) (2)

(*2)* [10]

(2)

DBE/2022

QUESTION 3: MATERIALS (GENERIC)

3.1 **Tempering:**

Tempering is a process generally applied to steel to relieve the strains/brittleness/improve ductility \checkmark induced during the hardening process. \checkmark (2)

3.2 Annealing:

- To relieve internal stresses ✓ that may have been set up during working of metal.
- To soften steel ✓ in order to facilitate the machining process.
- To refine their grain structure. ✓
- Reduce brittleness. ✓
- Make the steel ductile. \checkmark (Any 3 x 1) (3)

3.3		ising temperature: ve ✓ higher/upper critical temperature ✓		
		ve ✓ AC ₃ line. ✓	(Any 1 x 2)	(2)
3.4	Spark p	pattern for carbon steels:		
	3.4.1	High-carbon steel ✓		(1)
	3.4.2	Low-carbon steel / Mild steel \checkmark		(1)
	3.4.3	Cast-iron ✓		(1)
3.5	A. Ten B. AC ₃ C. AC	diagram: nperature range / °C ✓ ₃ line / Higher/upper critical temperature line ✓ ₁ line / Lower critical temperature line ✓ bon content / % carbon ✓		(4)

[14]

QUESTION 4: MULTIPLE-CHOICE QUESTIONS (SPECIFIC)

4.1	B✓	(1)
4.2	A✓	(1)
4.3	A 🗸	(1)
4.4	C✓	(1)
4.5	C✓	(1)
4.6	D✓	(1)
4.7	B✓	(1)
4.8	A✓	(1)
4.9	C✓	(1)
4.10	D✓	(1)
4.11	B✓	(1)
4.12	C✓	(1)
4.13	A✓	(1)
4.14	A✓	(1) [14]

QUESTION 5: TERMINOLOGY (LATHE AND MILLING MACHINE) (SPECIFIC)

5.1 **Disadvantages of using compound slide method:**

- The automatic feed of the machine cannot be used. \checkmark
- Only short tapers can be cut. ✓
- It causes fatigue in the operator. ✓
- Poor finish. ✓
- Take longer time to cut. ✓

(Any 2 x 1) (2)

5.2 **Taper:**

5.2.1 Length of taper:

$$\tan\frac{\theta}{2} = \frac{\mathsf{D}-\mathsf{d}}{2\times\ell}$$

$$\tan\frac{12}{2} = \frac{72 - 40}{2 \times \ell} \checkmark$$

$$2 \times \ell = \frac{32}{\tan 6^{\circ}} \checkmark$$

$$\ell = \frac{304,46}{2} \quad \checkmark$$

5.2.2 **Tailstock set-over:** Set-over = $\frac{L(D-d)}{2\ell}$ $x = \frac{(70+152,23)(72-40)}{2(152,23)}$

$$x = 23,36 \text{ mm} \checkmark$$
 (3)

(5)

5.3 Parallel key:

5.3.1 Width:
Width =
$$\frac{D}{4}$$

Width =
$$\frac{102}{4}$$
 \checkmark

$$= 25,50 \text{ mm} \checkmark$$
 (2)

5.3.2 **Thickness:** Thickness = $\frac{D}{6}$

Thickness =
$$\frac{102}{6}$$
 \checkmark

$$= 17 \text{ mm} \checkmark$$
 (2)

5.3.3 Length:

Length = $1,5 \times diameter of shaft$

5.4 **Disadvantages of gang milling:**

- The gang of cutters place more stress on the machine spindle bearings. ✓
- The cutters make the milling machine work harder. ✓

(2)

[18]

(2)

QUESTION 6: TERMINOLOGY (INDEXING) (SPECIFIC)

6.1 **Spur gear:**

6.1.1 **Number of teeth:**

Module = $\frac{168}{42}$ \checkmark

 $Module = \frac{PCD}{T}$

Module = 4
$$\checkmark$$

6.1.2 **Circular pitch:**

$$CP = m \times \pi$$

$$= 4 \times \pi \checkmark$$

$$= 12,57 \text{ mm} \checkmark$$

$$CP = \frac{PCD \times \pi}{T}$$

$$= \frac{168 \times \pi}{42} \checkmark$$

6.1.3 **Outside diameter:**

OD = PCD + 2(m)		OD = m(T + 2)	
= 168 + 2(4) ✓	OR	$= 4(42 + 2) \checkmark$	
= 176 mm ✓		= 176 mm ✓	(2)

6.2 W = 135 + 2(y)m = W - (2x) - (2R)m = W - 2(x+R)

6.2.1 Maximum width distance of dove tail (W):

Calculate y:

Tan
$$\theta = \frac{h}{y}$$

 $y = \frac{h}{\tan \theta} \checkmark$ OR $y = \tan \theta \times h \checkmark$
 $y = \frac{35}{\tan 60^{\circ}} \checkmark$ $y = \tan 30^{\circ} \times 35 \checkmark$
 $y = 20,21 \text{ mm } \checkmark$
W = 135 + 2(20,21) \checkmark
= 135 + 40,42
= 175,42 \text{ mm } \checkmark

Copyright reserved

(6)

6.2.2 **Distance between the rollers (m):**

Calculate *x*:

Tan
$$\alpha = \frac{\mathsf{R}}{x}$$

$$x = \frac{\mathsf{R}}{\mathsf{Tan}\,\alpha} \quad \checkmark$$

$$x = \frac{12}{\text{Tan } 30^{\circ}} \checkmark$$

OR

 $\tan \theta = \frac{x}{12}$

$$x = \tan \theta \times 12$$
 \checkmark

 $x = \tan 60 \times 12$ ✓

x = 20,78 mm \checkmark

 $x = \frac{12}{0,5774}$

$$m = W - (2x) - (2R) \checkmark$$

= 175,42 - (2 x 20,78) - (2 x 12) \sqrt{
= 175,42 - 41,56 - 24}
= 109,86 mm \sqrt{

OR

$$m = W - 2(x + R) \checkmark$$

$$m = 175,42 - 2(20,78 + 12) \checkmark$$

$$m = 175,42 - 65,56$$

$$m = 109,86 \text{ mm }\checkmark$$

(6)

6.3 Milling of spur gear:

6.3.1 Indexing:

Indexing =
$$\frac{40}{n}$$

Indexing
$$=$$
 $\frac{40}{113}$

Indexing =
$$\frac{40}{110}$$
 \checkmark

$$Indexing = \frac{40}{110} \div \frac{5}{5}$$

Indexing =
$$\frac{8}{22} \times \frac{3}{3}$$

Indexing =
$$\frac{24}{66}$$
 \checkmark

Approximate indexing: 24 holes on a 66-hole circle ✓

(4)

6.3.2 Change gears:

$$\frac{Dr}{Dn} = (A - n) \times \frac{40}{A}$$
$$\frac{Dr}{Dn} = (110 - 113) \times \frac{40}{110} \checkmark$$
$$\frac{Dr}{Dn} = -\frac{-3 \times 40}{110}$$
$$\frac{Dr}{Dn} = -\frac{-120}{110} \div \frac{5}{5}$$
$$\frac{Dr}{Dn} = -\frac{-24}{22} \times \frac{2}{2} \checkmark$$
$$\frac{Dr}{Dn} = \frac{48}{44} \checkmark$$

(4)

6.4 Unbalanced work piece:

- Unnecessary bearing loads \checkmark
- Excessive vibration ✓
- A bad finish ✓
- Work that is not perfectly round ✓
- Danger to the operator ✓
- Clatter on the gear teeth \checkmark
- A tendency to bend the spindle \checkmark

(Any 2 x 1) (2

QUESTION 7: TOOLS AND EQUIPMENT (SPECIFIC)

7.1	Tensile tester:

	 Yield stress ✓ Ultimate tensile stress / Maximum stress ✓ Elongation percentage / Ductility ✓ Limit of proportionality ✓ Limit of elasticity ✓ Break stress ✓ 	(Any 3 x 1)	(3)
7.2	Brinell hardness tester:		
	 A - Work piece / Test piece ✓ B - Steel Carbide ball / Indenter ✓ C - Indentation diameter ✓ 		(3)
7.3	Calculate cutting depth:		
	Cutting depth = 0,613 x pitch		
	= 0,613 x 1,75 ✓		
	= 1,07 mm ✓		(2)
7.4	Depth micrometer reading:		
	✓ ✓ 17,36 mm		(2)

7.5 **Function of moment tester:**

To determine the reactions \checkmark on either side \checkmark of a simply loaded \checkmark beam. (3) [13]

Copyright reserved

QUESTION 8: FORCES (SPECIFIC)

8.1 System of forces:

HORIZONTAL COMPONENT:

 $\Sigma HC = 50 cos 30^{\circ} - 85 cos 0^{\circ} + 75 cos 70^{\circ}$

$$\checkmark$$
 \checkmark \checkmark \checkmark
 $\Sigma HC = 43,30 - 85 + 25,65$

 Σ HC = -16,05 N ✓

VERTICAL COMPONENT:

 $\sum VC = 50sin30^{\circ} - 25sin90^{\circ} - 75sin70^{\circ}$

 $\sum VC = 25 - 25 - 70,48$

∑VC =-70,48N ✓

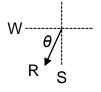
OR

Force	θ	VC/y = Fsinθ		$HC/x = Fcos\theta$	
50 N	30°	VC = 50sin30°	25 N ✓	HC = 50cos30°	43,30 N√
85 N	180°	VC = 85sin180°	0 N	HC = 85cos180°	-85 N ✓
25 N	270°	VC = 25sin270°	-25 N 🗸	HC = 25cos270°	0 N
75 N	290°	VC = 75sin290°	-70,48 N√	HC = 75cos290°	25,65 N√
		Total	-70,48 N ✓		-16,05 N ✓

$$R^2 = VC^2 + HC^2$$

$$\sqrt{R^2} = \sqrt{(-70,48)^2 + (-16,05)^2} \checkmark$$

 $\sqrt{R^2} = \sqrt{5225,033}$


 $R = 72,28 \text{ N } 77,17^{\circ} \text{ South from West}$ $\sqrt{OR} \qquad \checkmark$ $R = 72,28 \text{ N } 12,83^{\circ} \text{ West from South}$

 $\tan\theta = \frac{VC}{HC}$

$$\theta = \tan^{-1}(\frac{-70,48}{-16,05})$$

$$\theta = \tan^{-1}(4,39)$$

$$\theta = 77,17^{\circ}$$
 OR 77°10'12" \checkmark

(15)

8.2 Moments:

8.2.1 Point load for UDL:

$$6 \times 11 = 66 \text{ kN } \checkmark$$
 (1)

8.2.2 Calculate A Take moments about B: $\sum RHM = \sum LHM$

 $(A \times 11) = (12 \times 2,5) + (66 \times 5,5) + (75 \times 11)$

$$11A = 30 + 363 + 825$$

$$A = \frac{1218}{11} \checkmark$$

(3)

8.2.3 Calculate B Take moments about A: ∑ LHM = ∑RHM

$$11B = 0 + 363 + 102$$

$$\mathsf{B} = \frac{465}{11} \checkmark$$

 $B = 42,27 \text{ kN} \checkmark$

OR

$$A + B = 75 + 66 + 12$$
 🗸

$$B = 42,27 \text{ kN } \checkmark$$
 (3)

8.3.1 The resistance area:

$$A = \frac{\pi D^2}{4}$$

$$A = \frac{\pi (0.05)^{-2}}{4} \checkmark$$

$$A = 0.00196 \text{ m}^2 \text{ or } 1.96 \times 10^{-3} \text{ m}^2 \checkmark$$

8.3.2 The stress in the material in MPa:

$$\sigma = \frac{F}{A}$$

$$\sigma = \frac{50 \times 10^3}{1,96 \times 10^{-3}} \checkmark$$

 $\sigma = 25510204,082$ Pa

(3)

(2)

8.3.3 Strain in material:

$$\varepsilon = \frac{\Delta L}{L}$$
$$\varepsilon = \frac{0,005}{3}$$

 $\varepsilon = 0,0017$ OR $1,67 \times 10^{-3}$ (No unit! If unit indicated, answer is wrong) (2)

8.4 Label stress and strain diagram:

 \checkmark

- A Limit of proportionality \checkmark
- B Elastic limit ✓

D - Maximum stress ✓

(4) **[33]**

DBE/2022

QUESTION 9: MAINTENANCE	(SPECIFIC)
-------------------------	------------

9.1		urpose of maintenance: ure that the machinery always operates at an optimal le	evel. ✓	(1)
9.2	Preven	tative maintenance:		
	9.2.1	 Chain drives: Cleaning uncovered drives. ✓ Check sprocket teeth and link plate wear. ✓ Check lubricants. ✓ Checking the functioning of tensioning devices. Inspecting chains regularly for elongation. ✓ 	√ (Any 2 x 1)	(2)
9.3	9.2.2 Proper	 Belt drives: Checking the wear and tear on belt. ✓ Checking belt alignment. ✓ Checking the tension setting. ✓ Checking the tensioning devices. ✓ 	(Any 2 x 1)	(2)
	9.3.1	 Polyethylene (PET): Stiff ✓ Strong ✓ Hard ✓ Chemical resistance ✓ 	(Any 2 x 1)	(2)
	9.3.2	 Polypropylene (PP): Good fatigue resistance ✓ Heat resistance ✓ Tough ✓ Semi rigid ✓ Good chemical resistant ✓ 	(Any 2 x 1)	(2)
	9.3.3	 Polystyrene (PS): Good insulation properties ✓ Water resistant ✓ Odourless properties ✓ Light weight ✓ 	(Any 2 x 1)	(2)

Copyright reserved

9.4 **Factors influencing coefficient of friction:**

- Surface roughness/texture ✓
- Temperature ✓
- Type of lubricant ✓
- Type of friction ✓

9.5 Thermo-hardened composites:

This type of plastic goes through a chemical change during moulding that prevents reheating. \checkmark

9.6 **Types of belt drive systems:**

- V-belt ✓
- Wedge belt / Cog belt ✓
- Flat belt ✓
- Multi-groove belt ✓
- Toothed / Timing belt ✓
- Circular belt / Round belt ✓
- Poly V-belt ✓

(Any 3 x 1) (3) [18]

DBE/2022

(Any 3 x 1)

(3)

(1)

Please turn over

QUESTION 10: JOINING METHODS (SPECIFIC)

10.1 Square Thread:

10.1.1 **Pitch:**

Lead = Pitch × Number of starts

 $\mathsf{Pitch} = \frac{\mathsf{Lead}}{\mathsf{Number of starts}} \checkmark$

Pitch =
$$\frac{36}{3}$$
 \checkmark

Pitch = 12 mm \checkmark

10.1.2 **Pitch diameter:**

$$D_p = OD - \frac{P}{2}$$

$$\mathsf{D}_{\mathsf{p}} = 70 - \frac{12}{2} \checkmark$$

$$D_{p} = 64 \text{ mm} \checkmark$$
 (2)

10.1.3 Helix angle of the thread:

$$\mathsf{Tan}\,\theta = \frac{\mathsf{Lead}}{\pi \times \mathsf{PD}}$$

$$\operatorname{Tan} \theta = \frac{36}{\pi \times 64} \checkmark$$

Tan θ = 0,179049311

(3)

(3)

10.1.4 Leading angle:

Leading angle = 90° - (helix angle + clearance angle)
= 90° - (10°9' + 3°)
$$\checkmark$$

= 76°51' or 76,85° \checkmark (2)

10.1.5 **Following angle:**

Following angle = 90° + (helix angle - clearance angle)

$$= 90^{\circ} + (10^{\circ}9' - 3^{\circ}) \checkmark$$

= 97°9' or 97,15° \lambda (2)

10.2 Square thread cutting tool angles:

10.2.1 Square thread ✓

(1)

- 10.2.2 A Clearance angle \checkmark
 - B Leading angle ✓
 - C Following angle \checkmark
 - D Helix angle ✓

10.3 Included angle of Metric V-thread:

60° ✓

(1) **[18]**

(4)

QUESTION 11: SYSTEMS AND CONTROL (DRIVE SYSTEMS) (SPECIFIC)

11.1 Hydraulic calculations:

11.1.1 The fluid pressure in the hydraulic system in MPa:

$$A_{RAM} = \frac{\pi d^2}{4}$$

$$A = \frac{\pi (0.120)^2}{4} \quad \checkmark$$

$$A = 11.31 \times 10^{-3} \text{ m}^2 \quad \checkmark$$

NOTE: Force of Ram = 4 500 kg x 10 m/s² = $45 \times 10^3 \text{ N}$

$$P = \frac{F}{A}$$

$$P = \frac{45 \times 10^{3}}{11,3 \times 10^{-3}}$$

$$P = 3.98 \text{ N} \checkmark$$

(4)

11.1.2 Force to be applied on the plunger:

 $A_{Plunger} = \frac{\pi d^2}{\Delta}$ $A = \frac{\pi (0,032)^2}{4} \qquad \checkmark$ $A = 0.80 \times 10^{-3} m^2$ $P = \frac{F}{A}$ F=P×A ✓ $F = 3,98 \times 10^{6} \times 0,80 \times 10^{-3}$ \checkmark F=3184 N ✓ OR $\frac{F_A}{A_A} = \frac{F_B}{A_B}$ $\frac{F_{A}}{0.8 \times 10^{-3}} = \frac{45 \times 10^{3}}{11.31 \times 10^{-3}} \checkmark$ $F_{A} = \frac{\left(45 \times 10^{3}\right)\left(0.8 \times 10^{-3}\right)}{11.31 \times 10^{-3}}$

 $= 3184 \, \text{N} \quad \checkmark \tag{5}$

DBE/2022

11.2	Function hydraulic non-return valve: Used to provide one-directional oil flow and the fluid is not allowed to flow back. ✓	(1)
11.3	 Spring-loaded double-action control valve is used in a water line: Protect water supplies from back flow. ✓ Prevent water contamination. ✓ Safety device if one valve is jammed. ✓ (Any 2 x 1) 	(2)
11.4	 Pressure gauges: Bourdon tube gauge. ✓ Schrader gauge. ✓ 	(2)
11.5	Belt drive:	

11.5.1 **The rotational frequency:**

$$N_{\text{DN}} \times D_{\text{DN}} = N_{\text{DR}} \times D_{\text{DR}}$$

$$\mathsf{N}_{\mathsf{DN}} = \frac{\mathsf{N}_{\mathsf{DR}} \times \mathsf{D}_{\mathsf{DR}}}{\mathsf{D}_{\mathsf{DN}}} \quad \checkmark$$

$$N_{DN} = \frac{1320 \times 0,085}{0,375}$$

$$\mathsf{N}_{\mathsf{DN}} = \frac{299,2}{60} \checkmark$$

$$N_{\text{DN}} =$$
 4,99 r/sec \checkmark

(4)

11.5.2 **Power transmitted in Watt:**

$$P = \frac{(T_{1} - T_{2}) \pi DN}{60}$$

$$\checkmark$$

$$P = (275 - 120) \pi \times 0,375 \times 4,99$$

P = 911,199 Watt ✓

OR

$$P = (T_1 - T_2)\pi DN$$

= $\frac{(275 - 120) \times \pi \times 0,085 \times 1320}{60}$

(3)

11.6 Gear drive:

11.6.1 Number of teeth on T_A:

N _{input}	Product of the number of teeth on drivengears
N _{output}	Product of the number of teeth on driving gears

$$\frac{N_F}{N_A} = \frac{T_A \times T_C \times T_E}{T_B \times T_D \times T_F}$$
$$\frac{720}{320} = \frac{T_A \times 45 \times 50}{20 \times 25 \times 20} \checkmark$$

$$2,25 = \frac{2250 \times I_{A}}{10000} \quad \checkmark$$

 $2250 \times T_A = 2,25 \times 10000$

$$T_A = \frac{22500}{2250}$$

(4)

11.6.2 Gear ratio:

 $Gear ratio = \frac{Product of the number of teeth on driven gears}{Product of the number of teeth on driving gears}$

$$Gear ratio = \frac{20 \times 25 \times 20}{10 \times 45 \times 50} \checkmark$$

Gear ratio = 0,44:1 ✓

Speed Ratio = $\frac{N_A}{N_F}$ = $\frac{320}{720} \checkmark$ = 0,44:1 \checkmark

(3) **[28]**

TOTAL: 200