

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MECHANICAL TECHNOLOGY: WELDING AND METALWORK

NOVEMBER 2021

MARKING GUIDELINES

MARKS: 200

These marking guidelines consist of 23 pages.

QUESTION 1: MULTIPLE-CHOICE QUESTIONS (GENERIC)

1.1	B✓	(1)
1.2	A✓	(1)
1.3	D✓	(1)
1.4	A/C ✓	(1)
1.5	A✓	(1)
1.6	C✓	(1) [6]

QUESTION 2: SAFETY (GENERIC)

2.1 First-aid applications to an open wound:

- Use surgical gloves. ✓
- Do not remove anything that is stuck to the wound. ✓
- Never use sticky plaster on the wound. ✓
- Cover the wound with a clean, lint-free cloth. ✓
- Avoid using any oily substances or lotions on wounds. ✓
- If necessary, cool wounds with cold water. ✓
- Apply pressure to prevent blood loss if necessary. ✓
- Avoid contact with blood from patient. ✓
- If the wound is on your arm, raise the arm above your head to stop the bleeding. ✓

(Any 2 x 1) (2)

2.2 Surface grinder: (Already switched on)

- Never leave the grinder unattended. ✓
- Switch off the machine when leaving. ✓
- Don't try to stop revolving emery wheel with your hand. ✓
- Don't adjust the machine while working. ✓
- Don't open any guard while the machine is on. ✓
- Do not force the grinding wheel on to the work piece. ✓
- Approach the work piece slowly and evenly. ✓
- Don't clean the machine while working. ✓
- Do not put hands near the work piece when grinder is in motion. ✓
- Don't clean or adjust the machine while working.✓
- Check for oil on the floor while working (spilling of cutting fluid on floor while working) ✓
- Check that the grinding wheel is running evenly. ✓

(Any 2 x 1) (2)

2.3 **Gauges calibrated:**

- To ensure accurate readings. ✓
- To prevent overloading. ✓

(Any 1 x 1) (1)

2.4 Finger protectors' hazards on power driven guillotines:

- The finger protector prevents the hazards of getting the fingers cut by the blades. ✓
- To be crushed by the hold-downs. ✓

2.5 Welding or flame cutting operation safety:

- An operator has been instructed on how to use the equipment safely. ✓
- A workplace is effectively partitioned off. ✓
- An operator uses protective equipment. ✓
- Ensure that all equipment is in safe working condition. ✓
- Ensure that here are no flammable materials around the welding area. ✓
- Weld area must be well ventilated. ✓
- Fire extinguisher must be in close proximity. ✓

(Any 2 x 1) (2)

2.6 Workshop layout:

Product layout. ✓ (1)
[10]

QUESTION 3: MATERIALS (GENERIC)

3.1 File test:

3.1.1 Difficult ✓ (1)

3.1.2 Easy ✓ (1)

3.1.3 Difficult ✓ (1)

3.2 **Heat treatment:**

A. – Grain growth. ✓

B. – Recrystallisation. ✓

C. – Recovery. ✓

3.3 **Bending test:**

- Bend the test piece through a specific angle or around a mandrel or bar, ✓ having a defined radius, ✓ until a rupture in the metal occurs.✓
- Place the material in a vice and bend it ✓ then observe ✓ the ductility of the material. ✓

(Any 1 x 3) (3)

3.4 **Purpose of case hardening:**

Creates a hard surface ✓ with a tough core. ✓ (2)

3.5 Quenching media for hardening:

- Water ✓
- Brine (saltwater) ✓
- Oil ✓
- Soluble oil and water ✓
- Nitrogen air-infused air ✓

(Any 3 x 1) (3) [14]

QUESTION 4: MULTIPLE-CHOICE QUESTIONS (SPECIFIC)

4.1	B✓	(1)
4.2	B✓	(1)
4.3	D✓	(1)
4.4	C✓	(1)
4.5	D✓	(1)
4.6	A✓	(1)
4.7	A✓	(1)
4.8	B✓	(1)
4.9	C✓	(1)
4.10	B✓	(1)
4.11	C✓	(1)
4.12	B✓	(1)
4.13	A✓	(1)
4.14	D✓	(1) [14]

QUESTION 5: TERMINOLOGY (TEMPLATES) (SPECIFIC)

5.1 **Dimensions of the material:**

5.1.1 Mean \emptyset =Outside \emptyset -Plate Thickness = 960-60 \checkmark = 900 mm \checkmark (2)

5.1.2 Mean circumference = $\pi \times \text{Mean } \emptyset$ = $\pi \times 900 \checkmark$ = $2827,43 \text{ mm } \checkmark$ Round off to $2827 \text{ mm } \checkmark$ (3)

5.2 Welding symbols:

5.2.1 *** (2)

5.2.2 × ✓✓ (2)

5.2.4 X */* (2)

5.2.5 | **/ / /** (2)

5.3 **Templates:**

5.3.1 Flange template ✓ (1)

5.3.2 Strip template ✓ (1)

5.3.3 Web template \checkmark (1)

5.4 Hand tools: (Due to the large number of alternatives, marker discretion must be used - discuss with IM).

- Hand saws ✓
- Chisels ✓
- Plane ✓
- Handdrill and drill bits ✓
- Steel measuring tape ✓
- Straight edge ✓
- Compass ✓
- Trammel pins ✓
- Carpenter's square ✓
- Protractor ✓
- Chalk line ✓
- Steel rule ✓
- Hammers ✓
- Centre punch ✓
- Callipers ✓
- Scribe ✓
- Combination square ✓
- Spirit level ✓
- Trammel ✓

(Any 3×1) (3)

5.5 Template loft machines: (Due to the large number of alternatives, marker discretion must be used - discuss with IM).

- Circular saw ✓
- Planer ✓
- Drilling machine ✓
- Jig saw ✓
- Sanding machine ✓
- Shears for cutting cardboard ✓
- Welding machine ✓
- Angle grinder ✓
- Bench grinder ✓
- Guillotine ✓
- Cut–off power saw ✓

(Any 2 x 1) (2)

[23]

(5)

QUESTION 6: TOOLS AND EQUIPMENT (SPECIFIC)

6.1 Operating principles of a resistance welding machine:

- Current flows through a resistance to fuse plates together. ✓
- Two copper electrodes are pressed against the plates. ✓
- Heavy current is passed between the electrodes. ✓
- High resistance causes intense heat at the point. ✓
- The two plates melt and fuse together, forming a weld nugget or spot weld. √

6.2 **Arc welding:**

- 6.2.1 A. Arc welding machine / Power source / invertor. ✓
 - B. Earth clamp / "skelm" ✓
 - C. Electrode / Rod / welding rod ✓
 - D. Electrode holder ✓ (4)
- 6.2.2 Holds the electrode. ✓
 - Insulate the person welding ✓
 - Provide current to the electrode ✓
 - Used with electrode to weld ✓

(Any 1 x 1) (1)

6.3 **Cutting of threads:**

- Secure the die in die wrench/stock ✓ and set die square to the shaft to be cut. ✓
- Rotate the die through half a turn in a clockwise direction ✓ to cut the thread and then turn back a quarter of a turn ✓ to break off waste.
- Continue process until the die has reached the required length of thread ✓ and adjust the centre and side screws until desired thread fit is achieved. ✓

6.4 Advantages of using a punch machine:

- Can punch holes faster. ✓
- Punch various hole profiles ✓
- Less effort is needed ✓

(Any 1 x 1) (1)

Pyramid rollers

6.5

- Rolling sheet metal. ✓
- Used to roll round bars ✓

(Any 1 x 1) (1)

[18]

(6)

QUESTION 7: FORCES (SPECIFIC)

7.1 **Beams:**

7.1.1 Calculating reactions:

Taking moments about RL:

$$RR \times 10 = (80 \times 3) + (60 \times 5) + (100 \times 7)$$

$$= 240 + 300 + 700$$

$$RR = \frac{1240}{10}$$

$$= 124 \text{ N} \checkmark$$

Taking moments about RR:

RL×10=
$$(100\times3)+(60\times5)+(80\times7)$$

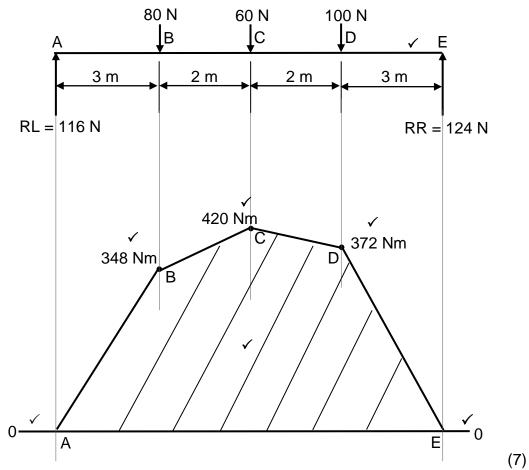
= 300+300+560
RL= $\frac{1160}{10}$
=116 N \checkmark (8)

7.1.2 Calculating bending moments:

Bending moments at B, C and D:

$$BM_{B} = (116 \times 3)$$

$$= 348Nm \checkmark$$


$$BM_{C} = (116 \times 5) - (80 \times 2)$$

$$= 420Nm \checkmark$$

$$BM_{D} = (116 \times 7) - (80 \times 4) - (60 \times 2)$$

$$= 372Nm \checkmark$$
(3)

7.1.3 **Bending moment diagram:**

NOTE: Draw the bending moment diagram to scale for marking purposes.

7.2 Stress and Strain:

7.2.1 **Diameter of a bar:**

$$\sigma = \frac{F}{A}$$

$$A = \frac{F}{\sigma}$$

$$= \frac{40 \times 10^{3}}{20 \times 10^{6}} \checkmark$$

$$= 2 \times 10^{-3} \text{m}^{2} \checkmark$$

$$A = \frac{\pi D^{2}}{4}$$

$$D = \sqrt{\frac{4A}{\pi}} \checkmark$$

$$= \sqrt{\frac{4(2 \times 10^{-3})}{\pi}} \checkmark$$

$$= 0,05046265 \text{ m} \checkmark$$

$$OR$$

$$= 50,46 \text{ mm} \checkmark$$
(6)

7.2.2 **Strain:**

$$\varepsilon = \frac{\sigma}{E}$$

$$\varepsilon = \frac{20 \times 10^6}{90 \times 10^9} \checkmark$$

$$= 0.22 \times 10^{-3} \checkmark$$
(2)

(5)

7.2.3 Change in length:

$$\varepsilon = \frac{\Delta L}{OL}$$

$$\Delta L = \varepsilon \times OL \checkmark$$

$$= (0.22 \times 10^{-3}) \times 2 \checkmark$$

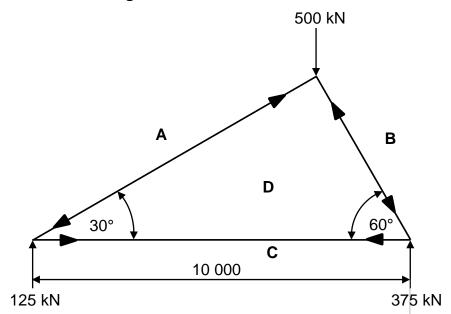
$$= 0.44 \times 10^{-3} \text{ m}$$

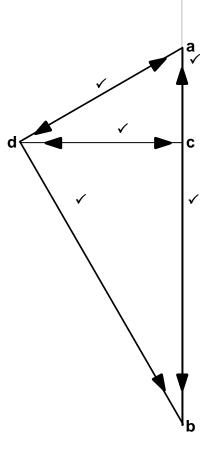
$$= 0.44 \text{ mm} \checkmark \tag{3}$$

7.3 Stress and strain diagram:

A: Limit of proportionality ✓

B: Elastic limit ✓


C: Yield point ✓


D: Maximum stress ✓

E: Break stress ✓

7.4 Simple frame:

7.4.1 **Vector/Force diagram:**

Copyright reserved Please turn over

(5)

7.4.2 Magnitude and nature of force:

Member	Force	Nature
AD	250 kN ✓	Strut ✓
BD	433 kN ✓	Strut ✓
CD	216 kN ✓	Tie ✓

(6) **[45]**

QUESTION 8: JOINING METHODS (INSPECTION OF WELDS) (SPECIFIC)

8.1 Arc welding aspects:

- Rate of rod burning and the progress of the weld ✓
- Amount of penetration and fusion. ✓
- Observe for welding defects while welding ✓
- The sound of the arc indicating correct current and voltage for the particular weld. ✓
- Angle of electrode. ✓
- Arc length. ✓
- Size of molten pool while welding ✓

(Any 3 x 1) (3)

8.2 **Centreline cracks:**

- Aiming at width to depth ratio of 1:1. ✓
- Decreasing the current to prevent excess penetration. ✓
- Decreasing welding voltage ✓
- Slowing travel speed to achieve a flat to convex weld surface. ✓
- Use clamping device. ✓
- Pre Heating ✓
- Use of correct electrode ✓

(Any 2 x 1) (2)

8.3 Welding defects:

8.3.1 Lack of fusion:

- Travel speed is too slow. ✓
- Wide weld joint. ✓
- Weld current too low. ✓
- Too big weaving action. ✓
- Included angle not correct. ✓
- Contaminated parent metal surface ✓
- Weld metal not permitted to roll in front of arc. ✓
- Arc not kept on leading edge of molten pool. ✓
- Travel speed too fast. ✓
- Excessive mill scale (iron oxide) ✓

(Any 2 x 1) (2)

8.3.2 **Porosity:**

- Contaminated weld surface. ✓
- Wet or dirty electrodes. ✓
- Shielding gas supply is interrupted. ✓
- Welding in windy conditions. ✓

(Any 2 x 1) (2)

8.3.3 **Incomplete penetration:**

- Welding current too low. ✓
- Welding speed too fast. ✓
- Incorrect electrode angle. ✓
- Poor joint preparation. ✓
- Insufficient root gap. ✓
- Electrode too big. ✓
- Too long arc. ✓
- Contaminated weld surface. ✓

(Any 2 x 1) (2)

8.4 Setting oxy-acetylene torch flame to a neutral flame:

- Open acetylene torch valve ¼ turns or less and ignite. ✓
- Adjust the acetylene torch valve further until the black smoke disappears. ✓
- Open oxygen torch valve until the flame is no longer burning yellow. ✓
- Inner cone of the flame must be rounded. ✓

(Any 3 x 1) (3)

8.5 Guided bend test:

- Specimen is placed across the supports of the die. ✓
- Apply force to the specimen to bend into shape of the die. ✓
- Determine the percentage of elongation of the weld metal. ✓

8.6 Free bend test:

- Determine the ductility of the weld. ✓
- Determine the ductility of the heat affected area adjacent to the weld. ✓
- Determine the percentage of elongation ✓

(Any 2 x 1) (2)

8.7 Types of dye:

- Type A: Fluorescent that emits visible light when viewed using a Black light. ✓
- Type B: Brightly coloured liquid dyes that can be inspected in regular light. ✓

8.8 Nick-break test:

- Determines internal ✓ quality of the weld metal. ✓
- Reveals internal defects ✓ such as slag inclusions, porosity and lack of fusion. ✓

(Any 1 x 2) (2)

[23]

QUESTION 9: JOINING METHODS (STRESS AND DISTORTION) (SPECIFIC)

9.1 Causes of residual stress in welds:

- Heat present in the weld. ✓
- Qualities of parent metal, filler rod or electrode. ✓
- Shape and size of weld. ✓
- Number of successive weld runs. ✓
- Comparative weight of weld and parent metal. ✓
- Type of welding joint used. ✓
- Welding method used to mitigate stress and distortion. ✓
- Type of structure of neighbouring joints. ✓
- Freeness of joint to be able to expand and contract. ✓
- Rate of cooling. ✓
- Stresses already present in the parent metal. ✓

(Any 2 x 1) (2)

9.2 Factors of cooling rate:

- Size of work piece. ✓
- Weld thickness. ✓
- Thermal conductive properties of parent metal. ✓

(Any 3 x 1) (3)

(4)

9.3 **Effect of cold working:**

- The effect of cold working is to break down the crystal structure ✓ elongating the grains. ✓
- An elongated and distorted crystal structure of this kind gives the metal greater hardness ✓ and tensile strength. ✓
- Reduces ductility. ✓
- Referred to as work hardening. ✓

9.4 Effects of welding speed on distortion:

- Increase in welding speed increases distortion due to larger flame in oxy-acetylene welding. ✓
- Larger diameter electrode requires increased current causing more localised heat. ✓
- Causing more residual stress.✓
- Causing more distortion. ✓

(Any 3 x 1) (3)

9.5 **Quenching media:**

- Water ✓
- Oil ✓
- Brine ✓
- Liquid salts ✓
- Sand ✓
- Air ✓
- Ash ✓
- Lime ✓
- Molten lead ✓
- Nitrogen air-infused air ✓

(Any 3 x 1) (3)

9.6 **Reducing welding distortion:**

- Do not over-weld. ✓
- Intermittent welding. ✓
- Place welds near the neutral axis. ✓
- Use a few passes as possible. ✓
- Use back step welding. ✓
- Anticipate the shrinkage forces. ✓
- Use clamps, jigs and fixtures. ✓
- Use strongbacks. ✓
- Heating metal before welding. (pre- heating) ✓
- Slowing the cooling rate ✓

(Any 3 x 1) (3) [18]

QUESTION 10: MAINTENANCE (SPECIFIC)

10.1 Locking out of machine:

- Isolation switches must be switched off. ✓
- The only key to the lock is in possession of the person carrying out the maintenance / Each maintenance person must have own lock. ✓

(2)

(2)

10.2 **Tagging plates:**

More than one technician can lock out machine simultaneously. ✓ (1)

10.3 Minor service for a power-driven guillotine:

The minor service is designed to minimise ✓ major mechanical and electrical failures. ✓

10.4 **Cutting fluid:**

- Keep the blade cool.
- Keep the work piece cool ✓
- Prolong the life span of the blade ✓
- Washes cuttings away ✓
- Improves cutting efficiency ✓
- Reduces friction during cutting process. ✓
- Better finish given to workpiece. ✓
- Also prevents further corrosion. ✓

(Any 2 x 1) (2)

10.5 **Overloading a rolling machine:**

- Limit the life span of components ✓
- Can result in costly damage ✓
- Damage to bearings/bushes ✓
- Damage to gearbox ✓
- Damage to motor ✓

(Any 1 x 1) (1)

(6)

QUESTION 11: TERMINOLOGY (DEVELOPMENTS) (SPECIFIC)

11.1 True length of AC:

$$AC^2 = AB^2 + BC^2$$

but BC =
$$\frac{90-50}{2}$$
 \checkmark

$$=\frac{40}{2}$$

$$AC^2 = AB^2 + BC^2$$

$$=50^2+20^2$$
 \checkmark

$$AC = \sqrt{2500 + 400}$$

$$= 53,85 \text{mm} \checkmark$$

11.2 **Development:**

Square/rectangle ✓ to round ✓ transformer / transition piece / on centre. ✓ (3)

11.3 Square to rectangle on centre hopper:

11.3.1 **True length of A-1:**

$$A - 1 = \sqrt{200^2 + 130^2 + 500^2}$$

$$= \sqrt{40000 + 16900 + 250000}$$

$$= \sqrt{306900}$$

$$= 553,99$$

$$= 554 \text{ mm}$$
(4)

11.3.2 **True length of C-2:**

$$C - 2 = \sqrt{470^2 + 200^2 + 500^2}$$

$$= \sqrt{220900 + 40000 + 250000}$$

$$= \sqrt{510900}$$

$$= 714,77$$

$$= 715 \text{ mm} \checkmark \tag{4}$$

11.4 Hoppers:

TOTAL: 200