

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

NATIONAL SENIOR CERTIFICATE

GRADE 12

MECHANICAL TECHNOLOGY: FITTING AND MACHINING NOVEMBER 2021 MARKING GUIDELINES

MARKS: 200

These marking guidelines consist of 24 pages.

Please turn over

QUESTION 1: MULTIPLE-CHOICE QUESTIONS (GENERIC)

1.6	C✓	(1) [6]
G.1		(1)
15	Λ - ⁄	(1)
1.4	A / C ✓	(1)
1.3	D✓	(1)
1.2	A✓	(1)
1.1	B✓	(1)

QUESTION 2: SAFETY (GENERIC)

2.1 **First-aid applications to an open wound:**

- Use surgical gloves. ✓
- Do not remove anything that is stuck to the wound. ✓
- Never use sticky plaster on the wound. ✓
- Cover the wound with a clean, lint-free cloth. ✓
- Avoid using any oily substances or lotions on wounds. ✓
- If necessary, cool wounds with cold water. ✓
- Apply pressure to prevent blood loss if necessary. ✓
- Avoid contact with blood from patient. ✓
- If the wound is on your arm, raise the arm above your head to stop the bleeding. ✓

(Any 2 x 1) (2)

2.2 Surface grinder: (Already switched on)

- Never leave the grinder unattended. ✓
- Switch off the machine when leaving. ✓
- Don't try to stop revolving emery wheel with your hand. ✓
- Don't adjust the machine while working. ✓
- Don't open any guard while the machine is on. ✓
- Do not force the grinding wheel on to the work piece. \checkmark
- Approach the work piece slowly and evenly. ✓
- Don't clean the machine while working. ✓
- Do not put hands near the work piece when grinder is in motion. ✓
- Don't clean or adjust the machine while working.✓
- Check for oil on the floor <u>while working</u> (spilling of cutting fluid on floor while working) ✓
- Check that he grinding wheel is running evenly. ✓

2.3 **Gauges calibrated:**

- To ensure accurate readings. ✓
- To prevent overloading. ✓

(Any 1 x 1) (1)

(2)

(2)

(Any 2 x 1)

2.4 Finger protectors' hazards on power driven guillotines:

- The finger protector prevents the hazards of getting the fingers cut by the blades. ✓
- To be crushed by the hold-downs. \checkmark

2.5 Welding or flame cutting operation safety:

- An operator has been instructed on how to use the equipment safely. ✓
- A workplace is effectively partitioned off. ✓
- An operator uses protective equipment. ✓
- Ensure that all equipment is in safe working condition. ✓
- Ensure that here are no flammable materials around the welding area. \checkmark
- Weld area must be well ventilated. ✓
- Fire extinguisher must be in close proximity. ✓

(Any 2 x 1) (2)

2.6 **Workshop layout:**

Product layout. ✓

(1) [**10**]

QUESTION 3: MATERIALS (GENERIC)

3.1	File test	:	
	3.1.1	Difficult ✓	(1)
	3.1.2	Easy ✓	(1)
	3.1.3	Difficult ✓	(1)
3.2	Heat trea A. – Gr B. – Re C. – Re	atment: ain growth. ✓ ecrystallisation. ✓ ecovery. ✓	(3)
3.3	Bending • Be ba oc • Pl du	I test: and the test piece through a specific angle or around a mandrel or ar, \checkmark having a defined radius, \checkmark until a rupture in the metal ccurs. \checkmark ace the material in a vice and bend it \checkmark then observe \checkmark the uctility of the material. \checkmark	
		(Any 1 x 3)	(3)
3.4	Purpose Creates a	e of case hardening: a hard surface ✓ with a tough core. ✓	(2)
3.5	Quenchi • W • Br • Oi • So • Ni	ing media: /ater ✓ rine (saltwater) ✓ il ✓ pluble oil and water ✓ itrogen air-infused air ✓ (Any 3 x 1)	(3) [14]

QUESTION 4: MULTIPLE-CHOICE QUESTIONS (SPECIFIC)

4.1	C✓	(1)
4.2	B✓	(1)
4.3	A✓	(1)
4.4	A✓	(1)
4.5	D✓	(1)
4.6	D✓	(1)
4.7	C✓	(1)
4.8	C✓	(1)
4.9	B / D ✓	(1)
4.10	D✓	(1)
4.11	A✓	(1)
4.12	A✓	(1)
4.13	B✓	(1)
4.14	D✓	(1) [14]

QUESTION 5: TERMINOLOGY (LATHE AND MILLING MACHINE) (SPECIFIC)

5.1 Advantages of compound slide method:

- Tapers with large angles can be cut. ✓
- External and internal tapers can be cut. ✓
- The set-up is simple. ✓

(Any 2 x 1) (2)

Taper cutting: 5.2

5.2.1 Length of taper:

$$\operatorname{Tan} \frac{\theta}{2} = \frac{D-d}{2 \times \ell}$$
$$2 \times \ell = \frac{D-d}{\tan \frac{\theta}{2}} \checkmark$$
$$2\ell = \frac{92-50}{\tan 4^{\circ}} \checkmark$$
$$2\ell = \frac{42}{0,069926811} \checkmark$$
$$\ell = \frac{600,6279909}{2} \checkmark$$
$$= 300,31 \text{ mm} \checkmark$$

1	5	١
l	J	,

5.2.2 Tailstock set-over:

Set – over =
$$\frac{L(D-d)}{2l}$$

= $\frac{425,31(92-50)}{2\times300,31}$ ✓
= 29,74 mm ✓

✓

(3)

(2)

(2)

(2)

5.3 **Key ways:**

5.3.1 Width:
Width =
$$\frac{D}{4}$$

Width = $\frac{75}{4} \checkmark$
= 18,75 mm \checkmark
5.3.2 Thickness:
Thickness = $\frac{D}{6}$
Thickness = $\frac{75}{6} \checkmark$
= 12,50 mm \checkmark
5.3.3 Length:
Length = 1,5 × diameter of shaft
= 1,5 × 75 \checkmark
= 112,50 mm \checkmark

5.4 **Disadvantages of down-cut milling:**

- Vibration in the arbor is unavoidable. \checkmark
- A fine feed must be used. ✓
- When milling material with hard scale, the cutter teeth come directly in contact with the scale, which can damage the cutter. ✓
- The process is time consuming. ✓

(Any 2 x 1) (2) [18]

QUESTION 6: TERMINOLOGY (INDEXING) (SPECIFIC)

6.1 Gear terminology:

6.1.1	Pitch-circle diameter:		$CP = m \vee \pi$	
	=1,5×200 ✓ =300mm✓	OR	$CP = M \times \pi$ $= 1,5 \times \pi$ $= 4,71 \text{ mm} \checkmark$ $PCD = \frac{CP \times T}{\pi}$ $= \frac{4,71 \times 200}{\pi}$	
			=299,85mm ✓	(2)
6.1.2	Dedendum:			

6.1.2

Dedendum=1,157×m		Dedendum=1,25×m	
=1,157×1,5 ✓	OR	=1,25×1,5 ✓	
=1,74 mm ✓		=1,88 mm ✓	(2)

Outside diameter: 6.1.3

$OD = PCD + 2 \times m$		OD = m(T + 2)	
= 300 + 2(1,5)	\checkmark	OR = 1,5(200 + 2)	✓
=303mm √		= 303 mm ✓	(2)

Working depth: 6.1.4

$WD = 2 \times m$		WD = $2 \times a$	
=2×1,5 ✓	OR	=2×1,5 ✓	
=3mm √		=3mm √	(2)

6.2 **Dovetails:**

W = 210 + 2(DE)m = W - 2(AC) - 2(R)

6.2.1 Maximum width distance of dove tail: (W)

Calculate DE or y:

$$\tan \theta = \frac{DE}{AD}$$

$$DE = \tan \theta \times AD \checkmark$$

$$= \tan 30^{\circ} \times 45 \checkmark$$

$$= 25,98 \text{ mm} \checkmark$$

$$W = 210 + 2(DE) \checkmark$$

$$= 210 + 2(25,98)$$

$$= 210 + 51.96$$

= 261,96 mm ✓

 \checkmark

(6)

6.2.2 Distance between the rollers: (m)

Calculate AC or x:

$$Tan\theta = \frac{BC}{AC}$$

$$AC = \frac{BC}{Tan\theta} \checkmark$$

$$AC = \frac{17}{Tan30^{\circ}} \checkmark$$

$$= 29,44 \text{ mm} \checkmark$$

$$m = W - 2(AC) - 2(R) \checkmark$$

$$\begin{array}{r} m = w - 2(AC) - 2(R) \\ = 261,96 - 2(29,44) - 2(17) \\ = 261,96 - 58,88 - 34 \\ = 169,08 \\ mm \\ \checkmark \end{array}$$

(6)

hining 11 NSC – Marking Guidelines

6.3 Milling of spur gear:

6.3.2 Change gears: (Markers to note alternative answers and calculations to award full marks if the answer is correct) $\frac{Dr}{Dn} = (A - n) \times \frac{40}{A}$

$$\frac{\mathrm{Dr}}{\mathrm{Dn}} = (140 - 137) \times \frac{40}{140} \checkmark$$
$$= 3 \times \frac{40}{140}$$
$$= \frac{120}{140} \checkmark$$
$$= \frac{12}{14}$$
$$= \frac{12}{14} \times \frac{2}{2} \checkmark$$
$$\frac{\mathrm{Dr}}{\mathrm{Dn}} = \frac{24}{28} \checkmark \mathrm{OR} \quad \frac{48}{56} \checkmark$$

(5) **[28]**

(3)

QUESTION 7: TOOLS AND EQUIPMENT (SPECIFIC)

7.1	 Functions of a moment and force tester: To determine the reaction on either side of a simple loaded 				
	 beam. ✓ To illustrate the concept of the triangle of force. ✓ 	(2)			
7.2	 TWO hardness testers: Brinell ✓ Rockwell ✓ Vickors ✓ 				
	• Vickers • (Any 2 x 1)	(2)			
7.3	 Precision measuring instrument: Depth micrometer ✓ Vernier caliper ✓ 				
	(Any 1 x 1)	(1)			
7.4	Identify tester: Tensile tester ✓	(1)			
7.5	 There are THREE ways that hardness is measured: Resistance to penetration. ✓ Elastic hardness. ✓ Resistance to abrasion / scratching / file test. Sound test (dropping it on the floor and listen to the sound).✓ (Any 3 x 1) 	(3)			
7.6	Screw thread height:				
	$H = 0,866 \times P$ $= 0,866 \times 2 \checkmark$				
	=1,73 mm ✓	(2)			
7.7	Measuring instrument: Vernier caliper ✓	(1)			
7.8	Interchangeable extension: To measure depths greater than 25 mm. ✓	(1) [13]			

QUESTION 8: FORCES (SPECIFIC)

8.1 **Calculate resultant:**

VERTICAL COMPONENT:

 Σ VC = -45sin90 ° - 70sin30 ° + 185sin45 °

$$\checkmark \checkmark \checkmark \checkmark \checkmark \checkmark$$
$$\Sigma \text{ VC} = -45 - 35 + 130,82$$

 \sum VC = 50,82N \checkmark

HORIZONTAL COMPONENT:

 Σ HC = 120cos0 ° - 70cos30 ° - 185cos45 °

 Σ HC = 120 - 60,62 - 130,82

$$\Sigma$$
HC = -71,44N \checkmark

OR

VC/y = Fsine		HC/x = Fcose	
-45sin90° OR 45sin270°	-45 N 🖌	120cos0°	120 N ✔
-70sin30° OR 70sin210°	-35 N ✓	-70cos30° OR 70cos210°	-60,62 N 🗸
185sin45° OR 185sin135°	130,82 N✓	-185cos45° OR 185cos135°	-130,82 N ✔
Y =	50,82 N ✓	X =	-71,44 N √

$$R^{2} = VC^{2} + HC^{2} \checkmark \qquad \tan\theta = \frac{VC}{HC} \checkmark \qquad \theta = \tan^{-1}(\frac{50,82}{71,44}) \checkmark \qquad \theta = \tan^{-1}(0,711) \qquad \theta = 35,43^{\circ} \checkmark \qquad R = 87,67 \text{ N } \checkmark \qquad R = 87,67 \text{ N } 54,57^{\circ} \text{ W of N } \checkmark \qquad R = 87,67 \text{ N } 50.82N$$

(15)

-71.44N

8.2 Moments:

8.2.1 **Point load for UDL:**

16kN/m × 5m ✓ 80kN ✓

(2)

8.2.2 Take moments about B:

A ×10,25)=(4,5 ×5,25)+(80 ×7,75)+(9,5 ×10,25) ✓

 $10,\!25A=23,\!625\!+\!620\!+\!97,\!375$

$$A = \frac{741}{10,25} \quad \checkmark$$

A = 72,29 kN (3)

8.2.3 **Take moments about A:**

$$10,25B = 0 + 200 + 22,5$$

$$B = \frac{222.5}{10.25} \checkmark$$

$$B = 21.71 \text{ kN} \checkmark \qquad (3)$$

8.3.1 The stress in the material in MPa:

$$\sigma = \frac{F}{A}$$

$$\sigma = \frac{90 \times 10^{3}}{6,17 \times 10^{-3}} \checkmark$$

$$\sigma = 14586709,89 \text{ Pa}$$

$$\sigma = 14,59 \text{ MPa} \checkmark$$

8.3.2 **The diameter of the mild steel shaft:**

$\sigma = \frac{F}{A}$	$A = \frac{\pi c}{2}$	$\frac{1^2}{1}$
$A = \frac{F}{\sigma} \checkmark$	$A \times 4 = \pi$	d²
$\frac{\pi d^2}{4} = \frac{90 \times 10^3}{14,59 \times 10^6} \checkmark$	$d^2 = \frac{A}{2}$	$\frac{1}{\pi} \times \frac{4}{\pi} \checkmark$
$\pi d^2 = \frac{90 \times 10^3 \times 4}{14,59 \times 10^6}$	$d = \sqrt{0}$	$\frac{A \times 4}{\pi}$
$\pi d^2 = 0,0247$	$d = \sqrt{1}$	$\frac{\left(6,17\times10^{-3}\right)\times4}{\pi} \checkmark$
$\sqrt{d^2} = \sqrt{\frac{0,0247}{\pi}}$	$d = \sqrt{1}$	0,007855887 ✓
$d = \sqrt{7,85 \times 10^{-3}}$	d = 0	,088633441 m ✓
d = 0,08863 m ✓	d = 8	8,63 mm ✓
d = 88,63 mm ✓		

(5)

(2)

8.3.3 **Original length:**

$$\varepsilon = \frac{\Delta L}{OL}$$
$$OL = \frac{\Delta L}{\varepsilon} \checkmark$$

$$OL = \frac{0,012}{1,64 \times 10^{-3}} \checkmark$$

OL = 7,32 mm ✓

(3)	
[33]	

QUESTION 9: MAINTENANCE (SPECIFIC)

9.1 **Preventative maintenance:**

- Planned or scheduled maintenance. \checkmark
- Condition-based maintenance. \checkmark

9.2 **Preventative maintenance of gear drive systems:**

- Checking and replenishment of lubrication levels. ✓
- Ensuring that gears are properly secured to shafts. ✓
- Cleaning and replacement oil filters. ✓
- Reporting excessive noise, wear, vibration and overheating for expert attention. ✓

(Any 3 x 1) (3)

(2)

9.3 **Purpose of jockey pulley:**

- The jockey pulley helps setting the tension on the system. \checkmark
- To increase the angle of contact in an open belt drive. \checkmark

(Any 1 x 1) (1)

9.4 **Properties of materials:**

- 9.4.1 **Teflon:**
 - Water resistant. ✓
 - Resistant to grease. ✓
 - Resistant to heat. ✓
 - Resistant to corrosion. ✓
 - Can withstand high temperatures. ✓
 - Need no lubricants. ✓
 - Electrical insulator ✓
 - Thermoplastic /Easy to be reshaped / recycled.✓

(Any 2 x 1) (2)

9.4.2 **Nylon:**

- Tough. ✓
- Hard-wearing. ✓
- Cheap. ✓
- Needs no or little maintenance. ✓
- Can withstand high temperatures. ✓
- Need no or little lubricants. ✓
- Is light. ✓
- Can absorb shock. ✓
- Resistant to chemicals. ✓
- Non-toxic. ✓
- Thermoplastic /Easy to be reshaped.
- Has high load-bearing strength √

(Any 2 x 1) (2)

NSC – Marking Guidelines

9.4.3 Vesconite:

- Wear resistant. ✓
- Low friction. ✓
- Operate with little or no lubrication. \checkmark
- Easy to machine. ✓
- Load carry higher than white metal. \checkmark
- Cost effective material. ✓
- Gives long life span. ✓
- Performs well, in unhygienic, dirty and un-lubricated environments.
- Low maintenance. ✓
- Low or no water absorption ✓
- High chemical resistance \checkmark
- Versatile ✓
- Can handle high temperatures \checkmark
- Thermoplastic /Easy to be reshaped \checkmark

9.5 Use of material:

9.5.1 **Polyvinyl chloride (PVC): (***Due to the large number of alternatives, marker discretion must be used - discuss with IM***).**

- Electrical cable isolation.√
- Electrical pipes. ✓
- Water pipes. ✓
- Artificial leather. ✓
- Cling wrap. ✓
- Credit / bank / phone cards.✓
- Window frames. ✓
- Fences. ✓
- Furniture. ✓

(Any 1 x 1) (1)

(Any 2 x 1)

(2)

9.5.2 Glass fibre: (Due to the large number of alternatives, marker discretion must be used - discuss with IM).

- Boats.✓
- Motor vehicles bodies. ✓
- Transparent roof sheeting. ✓
- Petrol tanks. ✓
- Swimming pools. ✓
- Furniture. ✓
- Fruit and salad bowls. ✓
- Ornaments. ✓
- Fishing equipment. ✓

(Any 1 x 1) (1)

9.6 **Difference between thermoplastic and thermo-hardened composites:**

Thermoplastic can be re-heated \checkmark and reshaped again \checkmark where a thermohardened plastic cannot be re-heated, \checkmark to be softened, shaped \checkmark and moulded again.

QUESTION 10: JOINING METHODS (SPECIFIC)

10.1 Screw thread:

- Square thread ✓
- Acme thread ✓
- V-screw thread ✓
- Trapezium thread / Buttress thread \checkmark

(Any 3 x 1) (3)

10.2 Square Thread:

10.2.1 **Pitch diameter:**

Pitch=
$$\frac{\text{Lead}}{\text{Numberof starts}}$$

= $\frac{36}{2}$ ✓
=18 mm ✓

$$PD = OD - \frac{P}{2}$$

$$= 80 - \frac{18}{2} \checkmark$$

$$= 71 \text{ mm} \checkmark \qquad (4)$$

10.2.2 Helix angle of the thread:

$$Tan\theta = \frac{Lead}{\pi \times PD}$$

$$Tan\theta = \frac{36}{\pi \times 71} \checkmark$$

$$\theta = tan^{-1}(0,161396562) \checkmark$$

$$= 9,17^{\circ} \checkmark$$
(4)

10.2.3 Leading angle:

Leading angle = 90° - (helix angle + clearance angle)
= 90° - (9,17° + 3°)
$$\checkmark$$

= 77,83° \checkmark (2)

10.2.4 **Following angle:**

Following angle = 90° + (helix angle - clearance)
= 90° + (9,17° - 3°)
$$\checkmark$$

= 96,17° \checkmark (2)

10.3 Multiple screw threads:

- They provide more bearing surface than single start screw thread / does not strip easily. \checkmark
- To provide faster linear movement. ✓
- They are more efficient as they lose less power to friction compared to single start screw threads. ✓

(3) [**18**]

hining 21 NSC – Marking Guidelines

QUESTION 11: SYSTEMS AND CONTROL (DRIVE SYSTEMS) (SPECIFIC)

11.1 Hydraulics:

- 11.1.1 **The fluid pressure:**
 - $P = \frac{F}{A}$ $P = \frac{25 \times 10^{3}}{9,62 \times 10^{-4}} \checkmark$ $A (Plunger) = \frac{\pi d^{2}}{4}$ $A = \frac{\pi (0,035)^{2}}{4} \checkmark$ $A = \frac{\pi (0,035)^{2}}{4} \checkmark$ $A = 9,62 \times 10^{-4} \text{ m}^{2}$ $P = 25,98 \text{ MPa} \checkmark$ (4)

11.1.2 Force at ram:

 $\frac{F}{A} = \frac{f}{a}$ $A (Ram) = \frac{\pi D^2}{4}$ $F = \frac{f \times A}{a} \checkmark$ $A = \frac{\pi (0.120)^2}{4} \checkmark$ $A = 11,31 \times 10^{-3} \text{ m}^2 \checkmark$ $F = \frac{(25 \times 10^3) \times (11,31 \times 10^{-3})}{9,62 \times 10^{-4}} \checkmark$ $F = 293918,92 \text{ N} \checkmark$ $F = 293,92 \text{ kN} \checkmark$ $F = 293,92 \text{ kN} \checkmark$ $F = 293,92 \text{ kN} \checkmark$ $F = \frac{f}{a^2}$ $\frac{F}{120^2} = \frac{25}{35^2} \checkmark$ $F = \frac{25 \times 120^2}{35^2} \checkmark$ $F = 293,88 \text{ kN} \checkmark$

(Any 1 x 1)

11.2 **Functions hydraulic reservoir:**

- A fluid storage tank. ✓
- Promotes air separation from the fluid. ✓
- Support for the pump and electric motor. ✓
- Promotes heat dispersion. ✓
- Acts as a base plate for mounting control equipment.
- Permits contaminants to settle at the bottom in order to be drained. ✓

11.3 Efficiency of pneumatic systems:

- Pneumatic tools are environmentally friendly. ✓
- Last long. ✓
- It is robust (powerful / less force required) ✓
- Easy to use. ✓
- It is compact. ✓
- Easy to maintain as there are so few working parts. ✓

(Any 2 x 1) (2)

(1)

11.4 Applications for pneumatic systems: (Due to the large number of alternatives, marker discretion must be used - discuss with IM).

- Drills. ✓
- Brake systems. ✓
- Jackhammers ✓
- Nail guns ✓
- Missiles ✓
- Doors ✓
- Spray guns ✓
- Air blow guns ✓
- Air socket wrench ✓
- Grinders ✓

(Any 2 x 1) (2)

11.5 Belt drives:

11.5.1 **Rotation frequency:**

$$N_1 \times D_1 = N_2 \times D_2 \quad \checkmark$$
$$N_2 = \frac{N_1 \times D_1}{D_2} \quad \checkmark$$
$$N_2 = \frac{7,2 \times 0,6}{0,8}$$
$$N_2 = 5,4 \text{ r/sec} \quad \checkmark$$

(3)

11.5.2 **Power transmitted:**

Ratio =
$$\frac{T_1}{T_2}$$
 P = $\frac{(T_1 - T_2)\pi DN}{60}$
 $T_2 = \frac{T_1}{Ratio}$ P = $(300 - 120)\pi \times 0.8 \times 5.4$ \checkmark
 $T_2 = \frac{300}{2.5}$ P = 2442.90 Watt
 $T_2 = 120$ N \checkmark P = 2.44 kW \checkmark (4)

11.6 Gear drives:

11.6.1 **Rotation frequency:**

N _{input}	Product of teeth on driven gears
N _{output}	Product of teeth on driver gears

$$N_{D}OUTPUT = \frac{T_A \times T_C \times N_A}{T_B \times T_D} \checkmark$$
$$N_{D}OUTPUT = \frac{30 \times 20 \times 2300}{40 \times 60} \checkmark$$

$$N_{D}$$
)OUTPUT = 575 r/min \checkmark

(4)	
-----	--

11.6.2 Gear ratio:

 $Gear ratio = \frac{Product of teeth on driven gears}{Product of teeth on driver gears}$

 $Gear ratio = \frac{40 \times 60}{30 \times 20} \quad \checkmark$

Gear ratio = $4:1 \checkmark$

OR

Speed ratio = $\frac{N_A}{N_D}$ = $\frac{2300}{575} \checkmark$ = 4:1 \checkmark

(3) **[28]**

TOTAL: 200