

# basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

# NATIONAL SENIOR CERTIFICATE

**GRADE 12** 

**MECHANICAL TECHNOLOGY: AUTOMOTIVE** 

**NOVEMBER 2021** 

**MARKING GUIDELINES** 

**MARKS: 200** 

These marking guidelines consist of 21 pages.

## **QUESTION 1: MULTIPLE-CHOICE QUESTIONS (GENERIC)**

1.1 .B ✓ (1)

1.2 A ✓ (1)

1.3 D ✓ (1)

1.4 A/C $\checkmark$  (1)

1.5 A ✓ (1)

1.6 C ✓ (1) **[6]** 

## **QUESTION 2: SAFETY (GENERIC)**

## 2.1 First-aid applications to an open wound:

- Use surgical gloves. ✓
- Do not remove anything that is stuck to the wound. ✓
- Never use sticky plaster on the wound. ✓
- Cover the wound with a clean, lint-free cloth. ✓
- Avoid using any oily substances or lotions on wounds. ✓
- If necessary, cool wounds with cold water. ✓
- Apply pressure to prevent blood loss if necessary. ✓
- Avoid contact with blood from patient. ✓
- If the wound is on your arm, raise the arm above your head to stop the bleeding. ✓

(Any 2 x 1) (2)

## 2.2 Surface grinder: (Already switched on)

- Never leave the grinder unattended. ✓
- Switch off the machine when leaving. ✓
- Don't try to stop revolving emery wheel with your hand. ✓
- Don't adjust the machine while working. ✓
- Don't open any guard while the machine is on. ✓
- Do not force the grinding wheel on to the work piece. ✓
- Approach the work piece slowly and evenly. ✓
- Don't clean the machine while working. ✓
- Do not put hands near the work piece when grinder is in motion. ✓
- Don't clean or adjust the machine while working.√
- Check for oil on the floor <u>while working</u> (spilling of cutting fluid on floor while working) ✓
- Check that the grinding wheel is running evenly. ✓

(Any 2 x 1) (2)

#### 2.3 **Gauges calibrated:**

- To ensure accurate readings. ✓
- To prevent overloading. ✓

(Any 1 x 1) (1)

#### 2.4 Finger protectors' hazards on power driven guillotines:

- The finger protector prevents the hazards of getting the fingers cut by the blades. ✓
- To be crushed by the hold-downs. ✓

## NSC – Marking Guidelines

## 2.5 Welding or flame cutting operation safety:

- An operator has been instructed on how to use the equipment safely. ✓
- A workplace is effectively partitioned off. ✓
- An operator uses protective equipment. ✓
- Ensure that all equipment is in safe working condition. ✓
- Ensure that here are no flammable materials around the welding area. ✓
- Weld area must be well ventilated. ✓
- Fire extinguisher must be in close proximity. ✓

(Any 2 x 1) (2)

## 2.6 Workshop layout:

Product layout. ✓ (1)
[10]

## **QUESTION 3: MATERIALS (GENERIC)**

#### 3.1 File test:

3.1.1 Difficult ✓ (1)

3.1.2 Easy ✓ (1)

3.1.3 Difficult ✓ (1)

#### 3.2 **Heat treatment:**

A. – Grain growth. ✓

B. – Recrystallisation. ✓

C. – Recovery. ✓

## 3.3 **Bending test:**

- Bend the test piece through a specific angle or around a mandrel or bar, ✓ having a defined radius, ✓ until a rupture in the metal occurs.✓
- Place the material in a vice and bend it ✓ then observe ✓ the ductility of the material. ✓

(Any 1 x 3) (3)

## 3.4 **Purpose of case hardening:**

Creates a hard surface ✓ with a tough core. ✓ (2)

#### 3.5 Quenching media for hardening:

- Water ✓
- Brine (saltwater) ✓
- Oil ✓
- Soluble oil and water ✓
- Nitrogen air-infused air ✓

(Any 3 x 1) (3) [14]

4.14

B√

(1) **[14]** 

NSC – Marking Guidelines

## **QUESTION 4: MULTIPLE-CHOICE QUESTIONS (SPECIFIC)**

| 4.1  | C✓ | (1) |
|------|----|-----|
| 4.2  | B✓ | (1) |
| 4.3  | C✓ | (1) |
| 4.4  | A✓ | (1) |
| 4.5  | B✓ | (1) |
| 4.6  | D✓ | (1) |
| 4.7  | B✓ | (1) |
| 4.8  | D✓ | (1) |
| 4.9  | A✓ | (1) |
| 4.10 | C✓ | (1) |
| 4.11 | A✓ | (1) |
| 4.12 | D✓ | (1) |
| 4.13 | D✓ | (1) |

5.5.3

Safety feature:

(1)

## **QUESTION 5: TOOLS AND EQUIPMENT (SPECIFIC)**

| 5.1 | •      | ression test: (Please note that if one step is missing and others blow the sequence, marks can still be allocated accordingly) 5.1.4                                                                                                                                                 |     |
|-----|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     | •      | Completely open the throttle valve. ✓                                                                                                                                                                                                                                                | (1) |
|     |        | Crank the engine until maximum pressure is reached (normally 4 to 10 revolutions)/needle stops moving. ✓                                                                                                                                                                             | (1) |
|     | •      | Read the pressure that the piston created, off the gauge. ✓                                                                                                                                                                                                                          | (1) |
|     |        | Move on to the next cylinders/Compare the readings of all the cylinders to the manufacturer's specification's readings/Compare readings with each other. ✓                                                                                                                           | (1) |
| 5.2 | Cylind | er leakage tester:                                                                                                                                                                                                                                                                   |     |
|     | 5.2.1  | Labelling: A - Leakage meter / gauge ✓ B - Control valve ✓ C - Flexible hose / pipe / tube ✓ D - Spark plug connector / adaptor ✓                                                                                                                                                    | (4) |
|     | 5.2.2  | Unit of measure: Percentage or % ✓                                                                                                                                                                                                                                                   | (1) |
| 5.3 | •      | st gas analyser: Water trap ✓ Paper filter ✓ Condenser ✓ (Any 2 x 1)                                                                                                                                                                                                                 | (2) |
| 5.4 | •      | of the on-board diagnostics (OBD) scanner: Plug the on-board diagnostics (OBD) scanner into the connector. ✓ Turn on the ignition but do not start the car. ✓ Enter the vehicle information as required by the scanner. ✓ Select correct system to scan (diagnostics) ✓  (Any 3 x 1) | (3) |
| 5.5 | Wheel  | balancer:                                                                                                                                                                                                                                                                            | (3) |
| 5.0 | 5.5.1  | Wheel balancer ✓                                                                                                                                                                                                                                                                     | (1) |
|     |        |                                                                                                                                                                                                                                                                                      | (1) |
|     | 5.5.2  | Function of the wheel balancer:  To balance wheels / statically / dynamically. ✓                                                                                                                                                                                                     | (1) |

Copyright reserved Please turn over

Wheel safety cover / guard / hood ✓

## 5.6 Wheel alignment angles:

- Caster ✓
- Camber ✓
- King pin inclination (KPI) / steering axis √

## 5.7 Wheel alignment precautions:

- Ensure the wheels are in a straight-ahead position ✓
- Ensure the steering box is on its high spot. ✓
- Centralise the steering wheel. ✓
- Lock the steering wheel in place. ✓
- Lock the brake pedal. ✓
- Check tire and rim condition. ✓
- Check tyre pressure and size. ✓
- Calibrate / zero the equipment before it is fitted to the wheels. ✓

(Any 3 x 1) (3)

[23]

#### **QUESTION 6: ENGINES (SPECIFIC)**

#### 6.1 Crankshaft firing order:

- To overcome the twisting effect of the power stroke on the crankshaft. ✓
- To reduce vibrations on the crankshaft. ✓
- Increase the lifespan of the crankshaft. ✓
- To improve engine cooling evenly throughout the engine. ✓

(Any 3 x 1) (3)

## 6.2 Crankshaft dynamic imbalance:

- Fit balance mass pieces to the crank webs. ✓
- Remove metal from the crank webs. ✓
- Arrange the crank webs on opposite sides of the crank pins. ✓
- Add a vibration damper. ✓

(Any 2 x 1) (2)

## 6.3 **Engine vibration:**

- The varying quantity of torque / low compression produced on power strokes. ✓
- The crankshaft alternately winding up and releasing as it rotates. ✓
- The crankshaft also has its own natural frequency of vibration. ✓
- The coinciding of different dynamic imbalances could produce excessive vibration called resonance. √
- The torsional/twisting effect of the power strokes upon the crankshaft. ✓
- The crankshaft is not statically balanced. ✓
- The crankshaft is not dynamically balanced. ✓
- The flywheel is not statically balanced. ✓
- The flywheel is not dynamically balanced. ✓
- The reciprocating mass is not balanced. ✓
- Faulty vibration damper. ✓
- Engine misfire. ✓
- Incorrect air/fuel ratio.
- Improper tightened / loose engine components. ✓
- Worn parts.

(Any 4 x 1) (4)

#### 6.4 **Power Impulses:**

6.4.1 180° ✓ (1)

6.4.2 144° ✓ (1)

6.4.3 120° ✓ (1)

6.4.4 90° ✓ (1)

## 6.5 Roots supercharger:

#### 6.5.1 **Labels:**

A – Casing / housing ✓

B – Air inlet / fill side ✓

 $C - Rotor \checkmark$  (3)

#### 6.5.2 **Operation of the Roots supercharger:**

- The engine drives the rotors by means of gears, belt or a chain. ✓
- Two symmetrical rotors spin. ✓
- Trapped air, between the rotors and casing, is pushed from the inlet side to the discharge side. ✓
- Large quantities of air move into the intake manifold. ✓
- This creates increased pressure in the cylinder. ✓ (5)

## 6.6 Variable geometry turbocharger:

#### 6.6.1 **Function of intercooler:**

- Intercooler is used to cool air 
   ✓ that has been compressed by a turbocharger ✓
- It reduces the volume ✓ and increases the density of the air. ✓
- Improving ✓ volumetric efficiency. ✓

(Any 1 x 2) (2)

#### 6.6.2 Function of vanes:

Vanes alter the air flow path of the exhaust gases  $\checkmark$  to optimize the turbine speed.  $\checkmark$ 

6.7 Advantages of a supercharger over a turbocharger:

- Does not suffer lag. ✓
- It is more efficient at lower r/min. ✓
- Simpler installation. ✓
- Cheaper to service and maintain. ✓
- Does not always need an intercooler. ✓
- No special lubrication required. ✓

(Any 3 x 1) (3)

[28]

(2)

## **QUESTION 7: FORCES (SPECIFIC)**

#### 7.1 **Definitions:**

#### 7.1.1 Brake power:

Brake power is the useable power / actual power / output power ✓ developed at the flywheel or at the drive wheels. ✓ (2)

#### 7.1.2 **Torque:**

- Torque is the twisting effort / force ✓ on a shaft or wheel. ✓
- Torque is the twisting effort / force ✓ measured over the applied radius. ✓

(Any 1 x 2) (2)

## 7.2 Indicated power diagram:

- Compression stroke pressure rise / increase. ✓
- Power stroke pressure drop / decrease. ✓

#### 7.3 Calculations:

7.3.1 
$$V_1$$
 - Clearance volume  $\checkmark$  (1)

7.3.2 
$$V_2$$
 - Swept volume  $\checkmark$  (1)

#### 7.3.3 **Cylinder volume:**

$$330 \, \text{ml} = 330 \, \text{cm}^3 \, \checkmark$$

Total cylinder volume = 
$$V_1 + V_2$$
  
=  $39 + 330 \checkmark$   
=  $369 \text{ cm}^3 \checkmark$  (3)

#### 7.3.4 Bore diameter in mm:

Swept Volume = 
$$\frac{\pi D^2}{4} \times L$$
  

$$D^2 = \frac{SV \times 4}{\pi \times L} \checkmark$$

$$= \frac{330 \times 4}{\pi \times 6.5} \checkmark$$

$$D = \sqrt{64.641} \checkmark$$

$$= 8.04 \text{ cm} \checkmark$$

$$= 80.4 \text{ mm} \checkmark$$
(5)

## 7.3.5 **Compression ratio:**

$$CR = \frac{\text{Total cylinder volume}}{\text{Clearance volume}}$$

$$= \frac{369}{39} \checkmark$$

$$= 9.46$$

$$= 9.5 : 1 \checkmark$$
(2)

## 7.4 Methods to lower the compression ratio:

- Fit thicker gasket between cylinder block and cylinder head. ✓
- Fit pistons with suitable lower crowns. ✓
- Fit crankshaft with shorter stroke. ✓
- Fit suitable shorter connecting rods. ✓
- Re-sleeve to a smaller bore size. ✓
- Fit a shim between the cylinder head and engine block. ✓

(Any 2 x 1) (2)

## 7.5 **Calculations:**

## 7.5.1 **Torque:**

$$BP = \frac{2\pi NT}{60}$$

$$T = \frac{BP}{2\pi N} \checkmark$$

$$= \frac{48000 \times 60 \checkmark}{2 \times \pi \times 6500} \checkmark$$

$$= 70,52 \text{ N.m} \checkmark$$
(4)

## 7.5.2 Indicated power in kW:

L×A = Volume  
= 
$$580,7 \text{ cm}^3$$
  
=  $580,7 \times 10^{-6} \text{ m}^3 \checkmark$ 

$$N = \frac{6500}{60 \times 1} \checkmark$$
= 108,33 power stroke/sec  $\checkmark$ 

IP = PLANn  
= 
$$450 \times 10^{3} \times 580,7 \times 10^{-6} \times 108,33 \times 2 \checkmark$$
  
=  $56618,25 \text{ W } \checkmark$   
=  $56,62 \text{ kW } \checkmark$  (6)

#### 7.5.3 **Mechanical efficiency:**

Mechanical Efficiency 
$$(\eta) = \frac{BP}{IP} \times 100$$
  
=  $\frac{48}{56,62} \times 100 \checkmark$   
=  $84,78 \% \checkmark$ 

[32]

(2)

## **QUESTION 8: MAINTENANCE (SPECIFIC)**

#### 8.1 Low CO<sub>2</sub> exhaust gas reading:

#### 8.1.1 **Possible causes:**

- Too rich air/fuel mixture. ✓
- Ignition misfire / Blown cylinder head or block. ✓
- Dirty or restricted air filter. ✓
- Improper operation of the fuel delivery system / Excessive fuel delivery pressure. ✓
- Faulty thermostat or coolant sensor. ✓
- Faulty PCV valve system. ✓
- Catalytic converter not working. ✓
- Exhaust system leaks ✓

(Any 2 x 1) (2)

#### 8.1.2 **Corrective measures:**

**Note:** The answer for 8.1.2 must correspond with the causes mentioned in 8.1.1.

- Reset fuel mixture. ✓
- Correct cause of misfire / Replace cylinder head or block. ✓
- Replace air filter. ✓
- Correct fuel delivery system pressure. ✓
- Repair or replace thermostat or coolant sensor. ✓
- Repair PCV system. ✓
- Repair or replace catalytic converter. ✓
- Repair exhaust system. ✓

(Any 2 x 1) (2)

#### 8.2 Indicate lean air/fuel mixture:

- High oxygen (O₂). ✓
- High carbon dioxide (CO₂). ✓
- High nitrogen oxide (NO<sub>x</sub>). ✓

(Any 2 x 1) (2)

(2)

## 8.3 Cylinder leakage test:

8.3.1 Hissing sound at the exhaust pipe:

| Cause                   | Corrective measure                                                                                                                                        |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Leaking exhaust valve ✓ | <ul> <li>Replace the exhaust valve ✓</li> <li>Re-seat (lap) the exhaust valve ✓</li> <li>Adjust exhaust valve clearance ✓</li> <li>(Any 1 x 1)</li> </ul> |

8.3.2 **Bubbles in the radiator water:** 

| Cause                                            | Corrective measure                           |
|--------------------------------------------------|----------------------------------------------|
| <ul> <li>Blown cylinder head gasket ✓</li> </ul> | <ul> <li>Skim the cylinder head ✓</li> </ul> |
|                                                  | <ul> <li>Skim the engine block ✓</li> </ul>  |
|                                                  | Replace cylinder head                        |
|                                                  | gasket ✓                                     |
| <ul> <li>Cracked cylinder head ✓</li> </ul>      | <ul> <li>Replace cylinder head ✓</li> </ul>  |
| <ul> <li>Cracked cylinder block ✓</li> </ul>     | <ul> <li>Replace cylinder block ✓</li> </ul> |
| (Any 1 x 1)                                      | (Any 1 x 1)                                  |

8.4 Engine temperature:

To allow the expansion of the components ✓ to obtain accurate readings. ✓ (2)

8.5 Fuel pressure test:

8.5.1 Replace fuel filter ✓ (1)

8.5.2 • Cracked fuel line ✓

Restricted / blocked fuel line ✓

(Any 1 x 1) (1)

8.5.3 • Clean the strainer ✓

Replace the strainer ✓

(Any 1 x 1) (1)

8.5.4 • Incorrect / Low voltage to the fuel pump ✓

Pump speed is slow ✓

Pump is not operational ✓

(Any 1 x 1) (1)

## 8.6 Oil pressure test:

- Oil pressure when engine is idling. ✓
- Oil pressure when engine is cold. ✓
- Oil pressure when engine is hot. ✓
- Oil pressure when engine is at high revolutions. ✓

(Any 3 x 1) (3)

## 8.7 Radiator cap pressure test:

- Obtain the radiator cap's opening pressure specifications (stamped on the cap). ✓
- Install the cap onto the adapter of the cooling system pressure tester. ✓
- Pump up the tester while watching the pressure gauge. ✓
- Note the reading when the pressure is released. ✓

[23]

#### QUESTION 9: SYSTEMS AND CONTROL (AUTOMATIC GEARBOX) (SPECIFIC)

#### 9.1 **Torque converters:**

#### 9.1.1 Torque converter labels:

- A. Turbine ✓
- B. Casing / housing ✓
- C. Pump / Impeller ✓
- D. Turbine shaft / output shaft ✓
- E. Stator ✓

## 9.1.2 Functions of torque converters:

- Multiplies engine torque automatically according to road and engine speeds. ✓
- Transfers drive from the engine to the transmission. ✓
- Acts as a flywheel to keep the engine turning during the idle strokes. ✓
- Slips during initial acceleration and while stopping to prevent stalling. ✓
- Dampens torsional vibrations of the engine. ✓
- Wheel spin is greatly reduced. ✓
- Drive the transmission oil pump. ✓
- Contributes toward smooth gear changing. ✓

(Any 3 x 1) (3)

(5)

#### 9.1.3 **Maximum torque multiplication:**

- When there is the largest speed difference ✓ between the impeller and turbine. ✓
- Maximum torque multiplication occurs at rest, ✓as the vehicle just starts to move. ✓

(Any 1 x 2) (2)

#### 9.2 Epicyclic gear train: (forward overdrive)

- The sun gear is locked ✓ with the planet carrier as driving ✓ member and the annulus as driven component. ✓
- The annulus is locked ✓ with the planet carrier as driving ✓ member and the sun gear is the driven component. ✓

(Any 1 x 3) (3)

(2) **[18]** 

## 9.3 **Gearshift lever positions:**

9.3.1 
$$P - park \checkmark$$
 (1)

9.3.2 R – reverse 
$$\checkmark$$
 (1)

9.3.3 D – drive 
$$\checkmark$$
 (1)

## QUESTION 10: SYSTEMS AND CONTROL (AXLES, STEERING GEOMETRY AND ELECTRONICS) (SPECIFIC)

## 10.1 Reasons for wheel alignment:

To achieve:

- desirable steering / Drive with least resistance. ✓
- easier steering control. ✓
- better tracking. ✓
- minimal vibrations. ✓
- even road-holding. ✓
- increase tyre life. ✓
- Checking of the camber angle. ✓
- Checking of the kingpin inclination. ✓
- Checking of the castor angle.
- Checking of the toe-out / toe-in. ✓
- Less fuel consumption. ✓

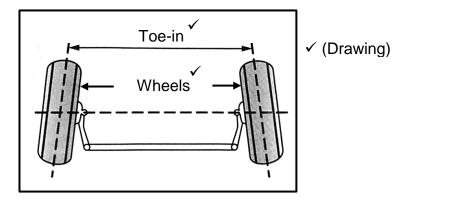
(Any 3 x 1) (3)

#### 10.2 **Camber:**

#### 10.2.1 Camber wear causes:

- Suspension misalignment. ✓
- A bent strut. ✓
- Dislocated strut tower. ✓
- A weak or broken spring. ✓
- A bent stub axle. ✓
- Collapsed or damaged control arm bushings. ✓
- Worn upper strut bearing. ✓
- Bent control arms. ✓
- Improper wheel alignment setting. ✓
- Damaged / worn ball joints. ✓

(Any 4 x 1) (4)


#### 10.2.2 **Positive camber angle:**

Positive camber angle refers to the outward tilt  $\checkmark$  of the top of the wheel.  $\checkmark$  (2)

## 10.2.3 **Camber adjustment:**

Camber is adjusted by means of a cam / wedge bolts ✓ or wedge plates (shims) ✓ on the suspension. (2)

#### 10.3 **Toe-in:**



#### 10.4 Effects of wheel imbalances:

- Wheel shimmy (wobble). ✓
- Wheel bounce (hop). ✓
- Uneven tyre wear. ✓
- Premature wheel bearing failure. ✓
- Rapid tyre wear. ✓
- Increased friction between road surface and the tyre. ✓

(Any 2 x 1) (2)

(3)

(2)

## 10.5 **Types of injectors:**

- Solenoid injector ✓
- Piezo injector ✓

#### 10.6 Purpose of the diesel particulate filter:

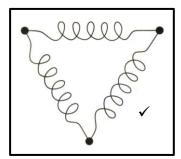
It is a filter that converts particulate matter or soot ✓ into ash. ✓ (2)

## 10.7 The headway sensor:

- The headway sensor detects an obstruction ahead of a vehicle. ✓
- The headway sensor will send a signal to the ECU. ✓

#### 10.8 The alternator:

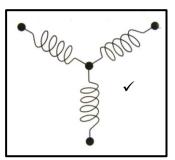
## 10.8.1 **Component:**


Stator ✓ (1)

#### 10.8.2 **Stator function:**

- It provides a coil ✓ into which a voltage is induced, ✓

(Any 1 x 2) (2)


## 10.8.3 **Stator windings:**



Delta connected stator windings ✓

## (2)

## 10.8.4 **Stator windings:**



Star or Y connected stator windings ✓ (2)

## 10.9 Advantages of an electric fuel pump:

- Immediate/quicker supply of fuel when the ignition switch is turned on. ✓
- Low sound during operation. ✓
- Less discharge pulsation of fuel. ✓
- Compact and light design. ✓
- Able to prevent internal fuel leaks and vapour lock. ✓
- Can be fitted within any location on the fuel line. ✓

(Any 3 x 1) (3)

[32]

**TOTAL: 200**